《2021-2022学年度强化训练北师大版七年级数学下册期末综合复习-卷(Ⅰ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版七年级数学下册期末综合复习-卷(Ⅰ)(含答案及解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 北师大版七年级数学下册期末综合复习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式运算结果为的是( )ABCD2、某周末,亮亮全家上午8时自
2、驾小汽车从家里出发,到某网红地游玩,该小汽车离家的距离(千米)与时间(时)之间的关系如图所示,根据图象提供的有关信息,判断下列说法错误的是( )A景点离亮亮的家180千米B10时至14时,小汽车匀速行驶C小汽车返程的速度为60千米/时D亮亮到家的时间为17时3、下列四个图标中,是轴对称图形的是( )ABCD4、下列成语中,描述确定事件的个数是()守株待兔;塞翁失马;水中捞月;流水不腐;不期而至;张冠李戴;生老病死A5B4C3D25、如图,直线AB和CD相交于点O,若AOC125,则BOD等于()A55B125C115D656、某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,
3、则( )定价(元)100110120130140150销量(台)801001101008060A定价是常量B销量是自变量C定价是自变量D定价是因变量7、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,138、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( ) 线 封 密 内 号学级年名姓 线 封 密 外 A6cmB5cmC3cmD1cm9、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是( )ABCD10、如图,将矩形纸条ABCD折叠,折痕为EF,
4、折叠后点C,D分别落在点C,D处,DE与BF交于点G已知BGD26,则的度数是( )A77B64C26D87第卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,点F,A,D,C在同一条直线上,则AC等于_2、如图,在中,点、分别为边、上的点,连接,将沿翻折得到,使若,则的大小为_3、面对新冠疫情,全国人民团结一心全力抗击,无数白衣天使不惧危险奋战在挽救生命的第一线,无数科技工作者不辞辛苦拼搏在攻克COVID-19的征程上在这些科技工作者中也不乏数学工作者的身影,他们根据医学原理和公开数据进行数学建模,通过动力学分析和统计学分析,结合优化算法等定量手段,试图揭示COV
5、ID-19的传播规律及其重要特征,评估治疗或防控措施的实效性,为流行病学和传染病学研究提供定量支撑,为政府和公共卫生部门的预测和控制决策提供理论依据目前发现的新冠病毒其直径约为0.00012毫米,将0.00012用科学记数法表示为_4、一个口袋中装有个白球、个红球,这些球除颜色外完全相同,充分搅匀后随机摸出一球是白球的概率为_5、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是_米;6、在有理数的原有运算法则中,我们定义新运算“”如下:,根据这个新规定可知_7、有六张正面分别标有数字,0,1,2,3,4的不透
6、明卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中任取一张,则抽取的卡片上的数字为不等式组的解的概率为_8、如图,过直线AB上一点O作射线OC,BOC2938,OD平分AOC,则DOC的度数为 _ 线 封 密 内 号学级年名姓 线 封 密 外 9、如图,AD是EAC的平分线,ADBC,B40,则DAC的度数为_10、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,则_度三、解答题(5小题,每小题8分,共计40分)1、计算:(1)计算:(1)2010+()2(3.14)0;(2)计算:x(x+2y)(x+1)2+2x2、如图,小强拿一张
7、正方形的纸片(图),将其沿虚线对折一次得图,再沿图中的虚线对折得图,然后用剪刀沿图中的虚线剪去一个角再打开,请你画出打开后的几何图形3、如图,已知线段a和b,直线AB和CD相交于点O利用尺规(直尺、圆规),按下列要求作图:(1)在射线OA,OB,OC上作线段OA,OB,OC,使它们分别与线段a相等;(2)在射线OD上作线段OD,使OD与线段b相等;(3)连接AC,CB,BD,DA;(4)你得到了一个怎样的图形?4、如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3)(1)求出ABC的面积为 (2)画出ABC关于x轴对称的图形A1B1C1(3)已知P为y轴上一点,若ABP的
8、面积为4,求点P的坐标 线 封 密 内 号学级年名姓 线 封 密 外 5、一个密码锁的密码由四个数字组成,每个数字都是09这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开粗心的小明忘了中间的两个数字,他一次就能打开该锁的概率是多少?-参考答案-一、单选题1、C【分析】根据同底数幂的乘除法及幂的乘方可直接进行排除选项【详解】解:A、与不是同类项,不能合并,故不符合题意;B、,计算结果不为,故不符合题意;C、,故符合题意;D、,计算结果不为,故不符合题意;故选C【点睛】本题主要考查同底数幂的乘除法及幂的乘方,熟练掌握同底数幂的乘除法及幂的乘方是解题的关键2、B【分析】根据函数图
9、象的纵坐标,可判断A、B;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C;根据函数值与自变量的对应关系,可判断D【详解】解:A、由纵坐标看出景点离小明家180千米,故A正确;B、由纵坐标看出10点至14点,路程不变,汽车没行驶,故B错误;C、由纵坐标看出返回时1小时行驶了180-120=60千米,故C正确;D、由纵坐标看出返回时1小时行驶了180-120=60千米,18060=3,由横坐标看出14+3=17,故D正确;故选:B【点睛】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键3、C【分析】
10、根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行求解即可【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 故选C【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟知轴对称图形的定义4、C【分析】根据个成语的意思,逐个分析判断是否为确定事件即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能
11、事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】解守株待兔,是随机事件;塞翁失马,是随机事件;水中捞月,是不可能事件,是确定事件;流水不腐,是确定事件;不期而至,是随机事件;张冠李戴,是随机事件;生老病死,是确定事件综上所述,是确定事件,共3个故选C【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键5、B【分析】根据对顶角相等即可求解【详解】解:直线AB和CD相交于点O,AOC125,BOD等于125故选B【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键6、C【分析】根据自变量、因变量
12、、常量的定义即可得【详解】由表格可知,定价与销量都是变量,其中,定价是自变量,销量是因变量,故选:C【点睛】本题考查了常量与变量、自变量与因变量,掌握理解相关概念是解题关键7、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12, 线 封 密 内 号学级年名姓 线 封 密 外 B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键8、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解【详解】解:设第三边长为xcm,根据三角形
13、的三边关系可得:3-2x3+2,解得:1x5,只有C选项在范围内故选:C【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和9、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键10、A【分析】本题首先根据BGD26,可以得出AEG=BGD2
14、6,由折叠可知=FED,由此即可求出=77【详解】解:由图可知: ADBCAEG=BGD26,即:GED=154,由折叠可知: =FED,=77故选:A【点睛】本题主要考察的是根据平行得性质进行角度的转化 线 封 密 内 号学级年名姓 线 封 密 外 二、填空题1、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,求出,则【详解】解:ABCDEF,AC=DF,即AF+AD=CD+AD,AF=CD,故答案为:6.5【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质2、30【分析】由 得出,由折叠性质可知,再根据三角形外角性质求
15、出【详解】解:如图,设 交 于点 ,由折叠性质可知,故答案为:【点睛】本题主要考查了平行线的性质,三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键3、1.210-4【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.00012=1.210-4故答案为:1.210-4【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式
16、,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值4、【分析】根据概率公式可直接进行求解【详解】解:由题意得:随机摸出一球是白球的概率为;故答案为【点睛】本题主要考查概率,熟练掌握概率的求解公式是解题的关键5、3.1【分析】根据点到直线,垂线段最短,即可求解【详解】解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米故答案为:3.1【点睛】本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键6、【分析】根据题意直接由定义运算的顺序转化为整式的混合运算,进一步计算得出答案即可【详解】解:2x(-3x)=2x(-3x)(-3x)2=-6x29x2=故答案为:【
17、点睛】本题考查新定义运算下的整式的混合运算,理解规定的运算方法,把问题转化进行解决问题7、【分析】先解出不等式组,可得到不等式组的整数解为2,3,4,再由概率公式即可求解【详解】解:不等式组,解不等式,得: ,解不等式,得: ,不等式组的解集为,不等式组的整数解为2,3,4,抽取的卡片上的数字为不等式组的解的概率故答案为: 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题主要考查了计算概率,解一元一次不等式组,求出不等式组的整数解是解题的关键8、【分析】先根据邻补角互补求出AOC=15022,再由角平分线的定义求解即可【详解】解:BOC2938,AOC+BOC=180,AOC=150
18、22,OD平分AOC,故答案为:【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键9、40【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B40,EAD=B=40,AD是EAC的平分线,DAC=EAD=40,故答案为:40【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键10、20【分析】利用平行线的性质求出1,再利用三角形外角的性质求出DCB即可【详解】解:EFCD,1是DCB的外角,1-B=50-
19、30=20,故答案为:20【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识三、解答题 线 封 密 内 号学级年名姓 线 封 密 外 1、(1)9;(2)2xy-1【分析】(1)直接利用乘方、负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)利用单项式乘多项式及完全平方公式展开,然后合并同类项即可得解【详解】解:(1)(1)2010+()2(3.14)0=1+9-1=9;(2)x(x+2y)(x+1)2+2x=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1【点睛】本题考查了整式的化简,以及乘方、负整数指数幂、零
20、次幂,关键熟练掌握各运算法则2、见解析【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案【详解】解:如图所示:【点睛】本题考查剪纸问题,对于此类问题,只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力3、(1)见解析;(2)见解析;(3)见解析;(4)轴对称图形【分析】(1)以为圆心,以线段的长为半径画圆,交OA,OB,OC上于点、,即可;(2)以为圆心,以线段的长为半径画圆,交OD上于点,即可;(3)连接对应线段即可;(4)根据图形的性质,求解即可【详解】解:(1)以为圆心,以线段的长为半径画圆,交OA,OB,OC上于点、,如下图:(2)以
21、为圆心,以线段的长为半径画圆,交OD上于点,如下图:(3)连接、,如下图: 线 封 密 内 号学级年名姓 线 封 密 外 (4)观察图形可得,得到的图形为轴对称图形【点睛】此题考查了尺规作图,作线段,涉及了轴对称图形的识别,解题的关键是按照题意,正确作出图形4、(1)4;(2)A1B1C1为所求作的三角形,画图见详解;(3)点P的坐标为(0,5)或(0,-3)【分析】(1)利用割补法求ABC面积,SABC=S梯形AODC-SABO-SCDB代入计算即可;(2)利用关于x轴对称,横坐标不变,纵坐标变为相反数,先求出A、B、C对称点坐标A1(0,-1),B1(2,0),C1(4,-3)然后描点A1
22、(0,-1),B1(2,0),C1(4,-3)再顺次连结线段A1B1,B1C1C1A1即可;(3)点P在y轴上,根据三角形面积先求出底AP的长,在分两种情况点P在点A的上方与下方,求出点P的坐标即可【详解】解:(1)过点C作CDx轴于D,A(0,1),B(2,0),C(4,3),AO=1,OB=2,OD=4,CD=3,BD=OD-OB=4-2=2,SABC=S梯形AODC-SABO-SCDB=,=,=,=4,故答案为4;(2)ABC关于x轴对称的图形A1B1C1,A(0,1),B(2,0),C(4,3)A1(0,-1),B1(2,0),C1(4,-3)描点:A1(0,-1),B1(2,0),C
23、1(4,-3)顺次连结A1B1,B1C1C1A1则A1B1C1为所求作的三角形;(3)点P在y轴上,以AP为底,以OB为高,SABP=,设点P的坐标为(0,n), 线 封 密 内 号学级年名姓 线 封 密 外 当点P在点A下方,1-n=4,解得n=-3,当点P在点A上方, n-1=4,解得n=5,ABP的面积为4,点P的坐标为(0,5)或(0,-3)【点睛】本题考查割补法求三角形面积,用描点法化轴对称图形方法,根据三角形面积建立AP的方程,利用分类讨论思想求出点P坐标是解题关键5、【分析】计算出数字的总共组合有几种,其中只有一种能打开,利用概率公式进行求解即可【详解】因为密码由四个数字组成,如个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是09中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是09中的一个,也要试10次,依此类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键,如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件A的概率