《2021-2022学年人教版初中数学七年级下册-第六章实数专项攻克.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版初中数学七年级下册-第六章实数专项攻克.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册 第六章实数专项攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、在实数,1.12112111211112(每两 个2之间依次多一个1)中,无理数有( )个A2B3C4D52、观察下列算式:212,224,238,2416,2532,2664,27128,28256,根据上述算式中的规律,你认为2810的末位数字是()A2B4C8D63、下列各数:3.14,0,2,-2,0.1010010001(1之间的0逐次增加1个),其中无理数有()A1个B2个C3个D4个4、下列说
2、法正确的是( )A2B27的立方根是3C9的平方根是3D9的平方根是35、下列判断中,你认为正确的是()A0的倒数是0B是分数C34D的值是36、下列各数中,无理数是( )ABCD7、a为有理数,定义运算符号:当a2时,aa;当a2时,a a;当a2时,a 0根据这种运算,则4(25)的值为()AB7CD18、下列各数:,3,2.050050005(相邻两个5之间的0的个数逐次加1),其中无理数有( )A1个B2个C3个D4个9、9的平方根是()A9B9C3D310、下列各式正确的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、在0.1010010001,0,中,无理数有_个2
3、、如图,用正方形制作的“七巧板”拼成了一只小猫,若小猫头部(图中涂色部分)的面积是16,则原正方形的边长为_cm3、若实数a、b、c满足+(bc+1)20,则2b2c+a_4、若的平方根是4,则a_5、比较大小: _4三、解答题(5小题,每小题10分,共计50分)1、已知一个数的两个不同的平方根分别是2a5和1a,8b的立方根是4(1)求这个正数;(2)求2a+b的算术平方根2、求下列各式中的的值:(1)2x2-18=0;(2)3、计算:4、计算题(1);(2)(1)20215、求下列各式中x的值:(1); (2)-参考答案-一、单选题1、C【分析】利用无理数的定义:无限不循环小数称为无理数,
4、进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数2、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6用81042022,余数是2故可知,末尾数是4【详解】2n的个位数字是2,4,8,6循环,所以81042022,则2810的
5、末位数字是4故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键3、C【分析】根据无理数的定义求解即可【详解】解:在所列实数中,无理数有:,2,0.1010010001(1之间的0逐次增加1个),共3个,故选:C【点睛】本题考查了无理数的定义,注意常见的无理数有:开方开不尽的数,含的数,有规律但不循环的数4、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】2,故A错误;27的立方根是3,故B错误;9的平方根是3,故C错误;9的平方根是3,故D正确;故选D【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键5
6、、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项【详解】解:A、0不能作分母,所以0没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 91516,所以 34,故本选项正确;D、的值是3,故本选项错误故选:C【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念6、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C、是有理数,故本选项不符合题意;D、是有
7、理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键7、A【分析】定义运算符号:当a2时,aa;当a2时,a a;当a2时,a 0先判断a的大小,然后按照题中的运算法则求解即可【详解】解:且当时,a=a,(-3)=-3,4+(2-5)=4-3=1-2,当a-2时,a=-a,4+(2-5)=1=-1,故选:A【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算8、B【分析】根据无理数的定义(无理
8、数是指无限不循环小数)判断即可【详解】解:,3是整数,属于有理数;无理数有,2.050050005(相邻两个5之间的0的个数逐次加1),共2个故选:B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001(相邻两个1之间的0的个数逐次加1),等有这样规律的数9、C【分析】根据平方根的定义解答即可【详解】解:(3)29,9的平方根是3故选:C【点睛】此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义如果一个数的平方等于a,即,那么这个数叫做a的平方根正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算
9、数平方根都是0,负数没有平方根,也没有算术平方根10、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论【详解】解:A、,原式错误,不符合题意;B、,原式错误,不符合题意;C、,原式错误,不符合题意;D、,原式正确,符合题意;故选:D【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键二、填空题1、2【解析】【分析】根据无理数的概念“无限不循环小数”求解即可【详解】解:在所列实数中,无理数有0.1010010001,共有2个故答案为:2【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键2、8【解析
10、】【分析】如图,根据图形可知与的面积相等,可得小猫头部的面积是正方形面积的,可求出正方形的面积,根据算术平方根的定义即可得答案【详解】如图所示:与的面积相等,小猫头部的面积是正方形面积的,小猫头部的面积是16,正方形面积为164=64cm2,64=82,正方形的边长为8cm,故答案为:8【点睛】本题主要考查了七巧板和正方形面积公式以及算术平方根等知识,根据已知得出原正方形的面积是解题关键3、1【解析】【分析】利用绝对值以及平方数的非负性,求出的值、和的关系式,利用整体代入直接求出代数式的值【详解】解:+(bc+1)20, 故, 故答案为:1【点睛】本题主要是考查了绝对值以及平方数的非负性、整体
11、代入法求解代数式的值,熟练利用非负性,求出对应字母的值,利用整体代入法,求解代数式的值,这是解决本题的关键4、256【解析】【分析】根据平方根与算术平方根的定义即可求解【详解】解:的平方根是4,故答案为:256【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根5、【解析】【分析】将4写成一个数的平方根,即可得出答案【详解】解:4=,1216,4,故答案为:【点睛】本题主要考查实数的比较大小,关键是掌握算术平方根的定义三、解答题1、(1)9;(2)0【解析】【分析】(1)根据一个正数的两个平方根互为相反数
12、计算即可;(2)根据立方根的性质求出b,结合(1)中的a计算即可;【详解】(1)一个数的两个不同的平方根分别是2a5和1a,一个数的两个不同的平方根分别是,这个正数是9(2)8b的立方根是4,2a+b的算术平方根0【点睛】本题主要考查了平方根的性质,算术平方根的计算,立方根的性质,准确计算是解题的关键2、(1)x=;(2)x=5【解析】【分析】(1)根据求平方根的方法求解方程即可;(2)根据求立方根的方法求解方程即可【详解】解:(1),;(2),【点睛】本题主要考查了根据求平方根和立方根的方法解方程,解题的关键在于能够熟练掌握求平方根和立方根的方法3、1【解析】【分析】根据平方根与立方根可直接
13、进行求解【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键4、(1)22;(2)4【解析】【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原式利用乘方的意义,算术平方根定义计算即可得到结果【详解】解:(1)原式22|4|22422;(2)原式154【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键5、(1);(2)【解析】【分析】(1)根据平方根的定义求解;(2)根据立方根的定义求解【详解】解:(1)原方程可变形为:,;(2)原方程可变形为:=8,x+1=2,x=1【点睛】本题考查了平方根,立方根,注意一个正数的平方根有2个,不要漏解