《备考练习2022年河北省新乐市中考数学模拟真题练习-卷(Ⅱ)(含详解).docx》由会员分享,可在线阅读,更多相关《备考练习2022年河北省新乐市中考数学模拟真题练习-卷(Ⅱ)(含详解).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北省新乐市中考数学模拟真题练习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、邢台市某天的最高气温是17,最低气温是2,那么当天的温差是
2、( )A19B-19 C15D-152、有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()ABCD3、若分式有意义,则的取值范围是( )ABCD4、若把分式中的x和y都扩大10倍,那么分式的值( )A扩大10倍B不变C缩小10倍D缩小20倍5、直线上两点的坐标分别是,则这条直线所对应的一次函数的解析式为( )ABCD6、计算的值为( )ABC82D1787、已知,则( )ABCD8、如图,在ABC中,C=20,将ABC绕点A顺时针旋转60得到ADE,AE与BC交于点F,则AFB的度数是()ABCD9、
3、在解方程时,去分母正确的是( )ABCD 线 封 密 内 号学级年名姓 线 封 密 外 10、如图,已知是的直径,过点的弦平行于半径,若的度数是,则的度数是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,、是线段上的两点,且是线段的中点若,则的长为_2、如图,在ABC中,BC=3cm,BAC=60,那么ABC能被半径至少为 cm的圆形纸片所覆盖3、已知与互为相反数,则的值是_4、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=_.5、己知,为锐角的外心,那么_三、解答题(5小题,每小题10分,共计50分)1、如图,二次函数
4、ya(x1)24a(a0)的图像与x轴交于A,B两点,与y轴交于点C(0,)(1)求二次函数的表达式;(2)连接AC,BC,判定ABC的形状,并说明理由2、在直角坐标系中,A的半径是2,圆心A的坐标为(1,0),A与x轴交于E、F两点,与y轴交于C、D两点,直线BC与A交于点C,与x轴交于点B(3,0)(1)求证:BC是A的切线;(2)若抛物线yax2bxc的顶点在直线BC上,与x轴的交点恰好为点 E、F,求抛物线的解析式;(3)在(2)的条件下,点M是抛物线对称轴上的一个动点,当ECM的周长最小时,请直接写出点M的坐标3、我们知道,有理数包括整数、有限小数和无限循环小数事实上,所有的有理数都
5、可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?例:将0.7化为分数形式:由于,设x=0.7,即 线 封 密 内 号学级年名姓 线 封 密 外 则再由得:,解得,于是得:同理可得:,根据阅读材料回答下列问题:(1)_;(2)昆三中地址为惠通路678号,寓意着三中学子都能被理想学校录取,请将化为分数形式,并写出推导过程(注:)4、已知:二次函数图象的顶点坐标为,且经过点;求此二次函数的解析式5、如图,直线与x,y轴分别交于点B,A,抛物线过点A(1)求出点A,B的坐标及c的值;(2)若函数在时有最小值为,求a的值;(3)当时,在抛物线上是否存在点M,使得SAB
6、M=1,若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由-参考答案-一、单选题1、A【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解:17-(-2)=17+2=19故选A【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键2、A【详解】【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案【详解】设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意,故选A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解
7、题关键3、A【解析】试题解析:根据题意得:3-x0, 线 封 密 内 号学级年名姓 线 封 密 外 解得:x3.故选A.考点:分式有意义的条件.4、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案【详解】解:分式中的x和y都扩大10倍可得:,分式的值不变,故选B【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变5、A【分析】利用待定系数法求函数解析式【详解】解:直线y=kx+b经过点P(-20,5),Q(10,20), ,解得,所以,直线解析式为故选A【点睛】本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握解题的关键
8、是掌握待定系数法6、D【分析】根据有理数的混合运算计算即可;【详解】解:故选D【点睛】本题主要考查了含有乘方的有理数混合运算,准确计算是解题的关键7、A【分析】先把C45.15化成159的形式,再比较出其大小即可【详解】解:,即故选:A【点睛】本题考查的是角的大小比较,熟知度、分、秒的换算是解答此题的关键 线 封 密 内 号学级年名姓 线 封 密 外 8、C【分析】先根据旋转的性质得CAE=60,再利用三角形内角和定理计算出AFC=100,然后根据邻补角的定义易得AFB=80【详解】ABC绕点A顺时针旋转60得ADE, CAE=60, C=20, AFC=100, AFB=80 故选C【点睛】
9、本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等9、A【分析】在方程的左右两边同时乘10,即可作出判断【详解】解:去分母得:,故选:A【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键10、A【分析】根据平行线的性质和圆周角定理计算即可;【详解】,故选A【点睛】本题主要考查了圆周角定理、平行线的性质,准确计算是解题的关键二、填空题1、【分析】利用已知得出AC的长,再利用中点的性质得出AD的长【详解】解:AB=10cm,BC=4cm,AC=6cm,D是线段AC的中点,AD=3cm故答案为:3cm【点睛】 线 封 密 内
10、 号学级年名姓 线 封 密 外 此题主要考查了线段长度的计算问题与线段中点的概念,得出AC的长是解题关键2、【分析】作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可【详解】解:作圆O的直径CD,连接BD,圆周角A、D所对弧都是,D=A=60CD是直径,DBC=90sinD=又BC=3cm,sin60=,解得:CD=的半径是(cm)ABC能被半径至少为cm的圆形纸片所覆盖【点睛】本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.3、【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,
11、再代入求值即可【详解】解:与互为相反数,+=0, 故答案为:【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键4、-1或1【分析】由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=1,代入计算即可【详解】解:a、b互为相反数,c、d互为倒数,m的绝对值是1,a+b=0、cd=1,m=1,当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1, 线 封 密 内 号学级年名姓 线 封 密 外 当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1故答案为:-1或1【点睛】本题考查相反数、倒数及绝
12、对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键5、【解析】【分析】根据外心的概念及圆周角定理即可求出答案.【详解】O是ABC的外心,O为ABC的外接圆圆心,BOC是弧BC所对圆心角,BAC是弧BC所对圆周角,BAC=BOC=40,故答案为:40【点睛】本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键.三、解答题1、(1);(2)直角三角形,理由见解析【分析】(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;(2)令,求出x的值,即得出A、B两点的坐标再根据勾股定理
13、,求出三边长最后根据勾股定理逆定理即可判断的形状(1)解:将点C代入函数解析式得:,解得:,故该二次函数表达式为:(2)解:令,得:,解得:,A点坐标为(-1,0),B点坐标为(3,0)OA=1,OC=, ,即,的形状为直角三角形【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理根据点C的坐标求出函数解析式是解答本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、(1)见解析(2)(3)【分析】(1)连接,由AB2BC2+AC2,即可求解;(2)求出抛物线顶点坐标为(1,),将点E的坐标代入抛物线表达式,即可求解;(3)由题意知,EC的长度不变
14、,点M在抛物线的对称轴上,连接CF交对称轴于点M,此时ECM的周长最短,进而求解(1)证明:连接,的半径为2,则,由点A、B的坐标知,则,在中,由勾股定理得:,在中,则,半径为的切线;(2)设BC的解析式为,把点B(-3,0)、C(0,)的坐标代入得,解得,直线的解析式为;由题意得,与x轴的交点分别为、,则抛物线的对称轴为过点A的直线抛物线的顶点在直线上,当时,抛物线顶点坐标为设抛物线解析式为,抛物线过点, 线 封 密 内 号学级年名姓 线 封 密 外 解得抛物线的解析式为;(3)由题意知,的长度不变,点M在抛物线的对称轴上,当C、M、F在同一条直线上时,最小;连接交对称轴于点M,此时的周长最
15、短,设直线的表达式为,则,解得,直线的表达式为,当时,故点M的坐标为【点睛】本题是二次函数综合题,主要考查了一次函数的性质、圆切线的知识、点的对称性等,解题关键是熟练运切线的判定和二次函数的性质进行推理计算3、(1)(2),过程见解析【分析】(1)设,即,则,再把两个方程相减即可得到答案;(2)设,即,则,再把两个方程相减即可得到答案.(1)解:由于,设,即则再由得:,解得,于是得:(2)解:由于,设,即则再由得:, 线 封 密 内 号学级年名姓 线 封 密 外 解得,于是得:.【点睛】本题考查的是把循环小数化为分数,一元一次方程的应用,理解题意,构建一元一次方程,掌握方程的特殊解法是解本题的
16、关键.4、【分析】根据抛物线的顶点坐标设出,抛物线的解析式为:,再把代入,求出的值,即可得出二次函数的解析式【详解】解:设抛物线的解析式为:,把代入解析式得,则抛物线的解析式为:【点睛】本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式5、(1)A(0,1),B(2,0),c1(2)5或(3),【分析】(1)根据两轴的特征可求yx1与x轴,y轴的交点坐标,然后将点A坐标代入抛物线解析式即可;(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a0,在1x4时,抛物线在顶点处取得最小值,当x1时,y有最小值, 当a
17、0,在1x4时,离对称轴越远函数值越小,即可求解;(3)存在符合条件的M点的坐标, 当时,抛物线解析式为:,设点P在y轴上,使ABP的面积为1,点P(0,m), 求出点P2(0,0),或P1(0,2),可得点M在过点P与AB平行的两条直线上,过点P2与 AB平行直线的解析式为:,联立方程组,解方程组得出,过点P1与AB平行的直线解析式为:,联立方程组,解方程组得出即可(1)解:在yx1中,令y0,得x2;令x0,得y1,A(0,1),B(2,0)抛物线yax22axc过点A,c1(2)解:yax22ax1a(x22x11)1a(x1)21a,抛物线的对称轴为x=1,当a0,在1x4时,抛物线在
18、顶点处取得最小值, 线 封 密 内 号学级年名姓 线 封 密 外 当x1时,y有最小值,此时1a4,解得a5; 当a0,在1x4时,4-1=31-(-1)=2,离对称轴越远函数值越小,当x4时,y有最小值, 此时9a1a4,解得a , 综上,a的值为5或(3)解:存在符合条件的M点的坐标,分别为,当时,抛物线解析式为:,设点P在y轴上,使ABP的面积为1,点P(0,m), ,解得,点P2(0,0),或P1(0,2),点M在过点P与AB平行的两条直线上,过点P2与 AB平行直线的解析式为:,将代入中,解得,过点P1与AB平行的直线解析式为:,将代入中,解得, , 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,存在符合条件的M点的坐标,分别为,【点睛】本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键