《2022年最新人教版初中数学七年级下册第九章不等式与不等式组定向攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版初中数学七年级下册第九章不等式与不等式组定向攻克试题(含答案解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组定向攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若不等式3x1,两边同时除以3,得()AxBxCxDx2、在数轴上表示不等式组1x3,正确的是()ABCD3、如果xy,则下列不等式正确的是()Ax1y1B5x5yCD2x2y4、若|m1|+m1,则m一定()A大于1B小于1C不小于1D不大于15、不等式的最大整数解为( )A2B3C4D56、解集在数轴上表示为如图所示的不等式的是( )ABCD7、如果关于x的方程ax3(x+1)1x有整数解,且
2、关于y的不等式组有解,那么符合条件的所有整数a的个数为()A3B4C5D68、在数轴上表示不等式1x2,其中正确的是()ABCD9、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A5B4C3D210、不等式2x13的解集在数轴上表示为()ABCD二、填空题(5小题,每小题4分,共计20分)1、定义:对于实数a,符号a表示不大于a的最大整数例如:5.2=5,-1=-1,-=-4;如果,则x的最大值为_2、节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个
3、奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等某单位元旦节发福利,准备给每个员工发一个鲜果礼盒采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种
4、鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间该水果店通过核算,此次订单的利润率为,则该单位一共有_名员工3、若关于的不等式有解,则的取值范围是_.4、已知不等式(a1)xa1的解集是x1,则a的取值范围为_5、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销
5、价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_元三、解答题(5小题,每小题10分,共计50分)1、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板_张,正方形纸板_张(请用含有
6、x的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完已知290a300,求a的值2、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请设计所有可行的购买方案供学校选择3、解不等式组,并写出所有整数解(不画数轴)4、解不等式组:(
7、1)(2)5、解不等式组3x174(x+1)3x+6,并将解集在数轴上表示出来-参考答案-一、单选题1、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案【详解】解:不等式3x1,两边同时除以3,得x故选:A【点睛】本题主要考查不等式的基本性质解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变特别是在系数化为1这一个过程中要注意不等号的方向的变化2、C【分析】把不等式组的解集在数轴上表示出来即可【详解】解:,在数轴上表示为:故选:C【点睛】本
8、题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则3、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键4、D【分析】先将绝对值等式移项变形为|m1|1 m,利
9、用绝对值的非负性质列不等式1 m0,解不等式即可【详解】解:|m1|+m1,|m1|1 m,|m1|0,1 m0,m1故选择D【点睛】本题考查绝对值的性质,列不等式与解不等式,掌握绝对值的性质,列不等式与解不等式方法是解题关键5、B【分析】求出不等式的解集,然后找出其中最大的整数即可【详解】解:,则符合条件的最大整数为:,故选:B【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键6、C【分析】根据数轴可以得到不等式的解集【详解】解:根据不等式的解集在数轴上的表示,向右画表示或,空心圆圈表示,故该不等式的解集为x2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,
10、运用数形结合的思想是本题的解题关键7、C【分析】先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax3(x+1)1x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案【详解】解:,解不等式,得:,解不等式,得:,不等式组的解集为,关于y的不等式组有解,解得:,ax3(x+1)1x,ax3x31x,ax3xx13,(a2)x4,关于x的方程ax3(x+1)1x有整数解,a为整数,a24,2,1,1,2,4,解得:a6,4,3,1,0,2,又,a4,3,1,0,2,符合条件的所有整数a的个数为5个,故选:C【点睛】此题考
11、查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键8、A【分析】不等式1x2在数轴上表示不等式x1与x2两个不等式的公共部分,据此求解即可【详解】解:“”空心圆圈向右画折线,“”实心圆点向左画折线故在数轴上表示不等式1x2如下:故选A【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示9、A【分析】
12、先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可【详解】解:解方程32x3(k2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,则,符合条件的整数的值的和为,故选A【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键10、D【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可【详解】解:由2x13得:x2,则不等式2x13的解集在数轴上表示为,故选:D【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键二、填空
13、题1、2【分析】首先根据定义确定出代数式的范围,建立不等式组,从而求解不等式即可【详解】解:根据定义可知:,解得:,x的最大值为2,故答案为:2【点睛】本题考查新定义问题,准确将题干信息转化为不等式组并求解是解题关键2、140【分析】设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润率为”列出方程,最后根据“预订乙种鲜果礼盒
14、的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可【详解】解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:,解得:,甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:,化简得:,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,即,解得:,m为正整数,m的值可能为36、37、38、39、40、41、42、43、44,n为正整数,是6的倍数,该单位一共有
15、80+40+20=140(名);故答案为140【点睛】本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键3、【分析】根据绝对值的几何意义,可把视为数轴上表示数x的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,得到当x位于第8个点时,取得最小值15,即可求出a的取值范围【详解】解:由绝对值的几何意义可得,把视为数轴上表示数x的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,当x位于第8个点时,即当x=-4时,的最小值为15,当关于的不等式有解时,
16、a的取值范围是故答案为:【点睛】此题考查了绝对值的几何意义和不等式性质,解题的关键是根据题意求得的最小值4、a1【分析】根据不等式的性质3,可得答案【详解】解:(a1)xa1的解集是x1,不等号方向发生了改变,a10,a1故答案为:a1【点睛】本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变5、【分析】设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进
17、口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可【详解】解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包, 则第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,即则第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元即即或 为整数,解得或 洁柔
18、体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则 第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,即解得都是整数,则能被和整除的数即能被整除故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键三、解答题1、(1)长方形纸板用了(x+300)张,正方形纸板用了(200x)张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298【解析】【分析】(1)可根据竖式纸盒+横式纸盒=100个,每
19、个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空;(2)根据题意,列不等式组求解即可;(3)设可以生产竖式纸盒m个,横式纸盒个,可列出方程,再根据a的取值范围求出a的取值范围即可【详解】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100x)个,则长方形纸板用了张,正方形纸板用了张长方形纸板用了(x+300)张,正方形纸板用了(200x)张(2)依题意,得:, 解得:x为整数,x38,39,40,共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个(3)
20、设可以生产竖式纸盒m个,横式纸盒个,由此可得,为偶数,依题意,得:或或答:a的值为293或298【点睛】本题考查一元一次不等式组的应用,列代数式,解题的关键是读懂题意,找到等量关系,正确列不等式求解,注意实际问题最后取整数解2、(1)甲、乙两种书柜每个的价格分别为元,元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【解析】【分析】(1)设甲、乙两种书柜每个的价格分别为元,元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解
21、方程组即可得到答案;(2)设计划购进甲种书柜个,则购进乙种书柜个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为元,元,则 解得: 答:甲、乙两种书柜每个的价格分别为元,元.(2)设计划购进甲种书柜个,则购进乙种书柜个,则 由得: 由得:,所以: 又因为为正整数,或或 所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程
22、组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.3、不等式组的解集为:;整数解为:-1,0,1,2【解析】【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可【详解】解:, 解不等式得:,解不等式得:,不等式组的解集为:,不等式组的整数解为:-1,0,1,2【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错4、(1)-1x2;(2)x3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小
23、小大中间找、大大小小找不到确定不等式组的解集【详解】解:(1)解不等式x-3(x-2)8,得:x-1,解不等式x-13-x,得:x2,则不等式组的解集为-1x2;(2)解不等式2x-36-x,得:x3,解不等式1-4x5x-2,得:x,则不等式组的解集为x3【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键5、,在数轴上表示见解析【解析】【分析】首先根据解一元一次不等式组的步骤求出不等式组的解集,然后在数轴上表示出来即可【详解】解: 3x174(x+1)3x+6,解不等式3x174(x+1),去括号得:移项得:合并同类项得:系数化为1得:解不等式4(x+1)3x+6,去括号得: 移项得: 合并同类项得: 不等式组的解集为,在数轴上表示如下:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键