2022版高考数学一轮总复习第9章统计与统计案例第2节用样本估计总体学案含解析.doc

上传人:可****阿 文档编号:30719771 上传时间:2022-08-06 格式:DOC 页数:11 大小:406KB
返回 下载 相关 举报
2022版高考数学一轮总复习第9章统计与统计案例第2节用样本估计总体学案含解析.doc_第1页
第1页 / 共11页
2022版高考数学一轮总复习第9章统计与统计案例第2节用样本估计总体学案含解析.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《2022版高考数学一轮总复习第9章统计与统计案例第2节用样本估计总体学案含解析.doc》由会员分享,可在线阅读,更多相关《2022版高考数学一轮总复习第9章统计与统计案例第2节用样本估计总体学案含解析.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、用样本估计总体考试要求1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题1常用统计图表(1)作频率分布直方图的步骤:求极差(即一组数据中最大值与最小值的差)决定组距与组数将数据分组列频率分布表画频率分布直方图(2)频率分布直方图:反映样本频率分布的直方图(如图)横轴表示

2、样本数据,纵轴表示,每个小矩形的面积表示样本数据落在该组内的频率各小矩形的面积和为1.(3)频率分布折线图和总体密度曲线频率分布折线图:将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起来,就得到频率分布折线图总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线(4)茎叶图的画法步骤:第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的右(左)侧2样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这

3、组数据的众数(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数(3)平均数:把称为x1,x2,xn这n个数的平均数(4)标准差与方差:设一组数据x1,x2,x3,xn的平均数为,则这组数据的标准差和方差分别是s;s2(x1)2(x2)2(xn)21频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和(3)中位数的估计值的左边和右边的小矩形的面积和是相等的2平均数、方差的公式推广(1)若数据x1,x2,xn的平均数为,那么mx1a

4、,mx2a,mx3a,mxna的平均数是ma.(2)数据x1,x2,xn的方差为s2.数据x1a,x2a,xna的方差也为s2;数据ax1,ax2,axn的方差为a2s2.一、易错易误辨析(正确的打“”,错误的打“”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势()(2)一组数据的方差越大,说明这组数据越集中. ()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次()答案(1)(2)(3)(4)二、教材习题衍生1一个容量为32的样本,已知某组样本的频率为

5、0.25,则该组样本的频数为()A4B8 C12D16B设频数为n,则0.25,n320.258.2若某校高一年级8个班参加合唱比赛的得分分别为87,89,90,91,92,93,94,96,则这组数据的中位数和平均数分别是()A91.5和91.5B91.5和92C91和91.5D92和92A这组数据为87,89,90,91,92,93,94,96,中位数是91.5,平均数91.5.3如图是100位居民月均用水量的频率分布直方图,则月均用水量为2,2.5)范围内的居民有_人250.50.510025. 考点一样本的数字特征的计算与应用 利用样本的数字特征解决决策问题的依据(1)平均数反映了数据

6、取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定(2)方差的简化计算公式:s2(xxx)n2,或写成s2(xxx)2,即方差等于原数据平方的平均数减去平均数的平方1(2020济南模拟)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则()A.4,s22C.4,s24,s22A某7个数的平均数为4,这7个数的和为4728,加入一个新数据4,4.又这7个数的方差为2,且加入一个新数据4,这8个数的方差s22,故选A.2甲、乙两人在一次射击比赛中各射靶

7、5次,两人成绩的条形统计图如图所示,则()甲乙A甲的成绩的平均数小于乙的成绩的平均数B甲的成绩的中位数等于乙的成绩的中位数C甲的成绩的方差小于乙的成绩的方差D甲的成绩的极差小于乙的成绩的极差C根据条形统计图可知甲的中靶情况为4环、5环、6环、7环、8环;乙的中靶情况为5环、5环、5环、6环、9环.甲x (45678)6,乙x(5369)6,甲的成绩的方差为2,乙的成绩的方差为2.4;甲的成绩的极差为4环,乙的成绩的极差为4环;甲的成绩的中位数为6环,乙的成绩的中位数为5环,综上可知C正确,故选C.3某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10

8、,方差为2,则|xy|的值为()A1B2 C3D4D由题意可知(xy)2x2y22xy,即2082xy400,xy96.(xy)2x2y22xy16,|xy|4,故选D.4(2020全国卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元该厂有甲、乙两个分厂可承接加工业务甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:

9、甲分厂产品等级的频数分布表等级ABCD频数40202020乙分厂产品等级的频数分布表等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525575频数40202020因此甲分厂加工出来的100件产品的平均利润为15.由数据知乙分厂加

10、工出来的100件产品利润的频数分布表为利润7030070频数28173421因此乙分厂加工出来的100件产品的平均利润为10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务 考点二茎叶图 1.茎叶图的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一(2)重复出现的数据要重复记录,不能遗漏(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小注意“叶”中数不一定按大小次数排列2利用茎叶图解题的关键是抓住“叶”的分布特征,准确从中提炼信息3以茎叶图为载体,一般考查中位数、平均数、方差1(202

11、0平顶山模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为()A2B4 C5D6A由茎叶图可得,获“诗词达人”称号的有8人,据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为82(人)2.(2020长沙质检)为比较甲乙两地某月11

12、时的气温情况,随机选取该月5天11时的气温数据(单位:)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1 ,则甲地该月11时的平均气温的标准差为()A2B C10DB甲地该月5天11时的气温数据(单位:)为28,29,30,30m,32;乙地该月5天11时的气温数据(单位:)为26,28,29,31,31,则乙地该月11时的平均气温为(2628293131)529(),所以甲地该月11时的平均气温为30 ,故(28293030m32)530,解得m1.则甲地该月11时的平均气温的标准差为.3.空气质量指数 (Air Quality Index,简称AQI)是定量

13、描述空气质量状况的指数,空气质量按照AQI大小分为六级,050为优;51100为良;101150为轻度污染;151200为中度污染;201300为重度污染;大于300为严重污染从某地一环保人士某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图根据该统计数据,估计此地该年AQI大于100的天数约为_(该年为365天)146该样本中AQI大于100的频数是4,频率为,由此估计该地全年AQI大于100的频率为,估计此地该年AQI大于100的天数约为365146. 考点三频率分布直方图 频率、频数、样本容量的计算方法(1)组距频率(2)频率,样本容量,样本容量频率频数典例(1)为了了解某校九年级

14、1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是()A该校九年级学生1分钟仰卧起坐的次数的中位数为26.25B该校九年级学生1分钟仰卧起坐的次数的众数为27.5C该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320D该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32(2)(2019全国卷)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩

15、尔浓度相同经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图:甲离子残留百分比直方图乙离子残留百分比直方图记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.求乙离子残留百分比直方图中a,b的值;分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)(1)D由频率分布直方图可知,中位数是频率分布直方图面积等分线对应的数值,是26.25;众数是最高矩形的中间值27.5;1分钟仰卧起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30的人数为320;1分钟仰卧起坐的次数少于

16、20的频率为0.1,所以估计1分钟仰卧起坐的次数少于20的人数为160.故选D.(2)解由已知得0.70a0.200.15,故a0.35.b10.050.150.700.10.甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.054.05.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.156.00.点评:(1)频率分布直方图的纵坐标是,而不是频率,切莫与条形图混淆(2)频率分布直方图考查时,重视求平均数、中位数、方差,计算要准确,解决突破口是各个矩形面积之和为1.1为了了解某校高三学生的视力情况,随机地抽查了该

17、校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A64B54 C48D27B前两组中的频数为100(0.050.11)16.因为后五组频数和为62,所以前三组为38.所以第三组频数为22.又最大频率为0.32,对应的最大频数为0.3210032.所以a223254.2(2020石家庄模拟)“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(9

18、0分及以上为认知程度高)现从参赛者中抽取了x人,按年龄分成5组,第一组:20,25),第二组:25,30),第三组:30,35),第四组:35,40),第五组:40,45,得到如图所示的频率分布直方图,已知第一组有6人(1)求x;(2)求抽取的x人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为15组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中15组的成绩分别为93,96,97,94,90,职业组中15组的成绩分别为93,98,9

19、4,95,90.()分别求5个年龄组和5个职业组成绩的平均数和方差;()以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想解(1)根据频率分布直方图得第一组的频率为0.0150.05,0.05,x120.(2)设中位数为a,则0.0150.075(a30)0.060.5,a32,则中位数为32.(3)()5个年龄组成绩的平均数为1(9396979490)94,方差为s(1)2223202(4)26.5个职业组成绩的平均数为2(9398949590)94,方差为s(1)2420212(4)26.8.()从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可)11

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁