《2022年必考点解析沪科版九年级数学下册第26章概率初步综合测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪科版九年级数学下册第26章概率初步综合测试试卷(含答案详解).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中是必然事件的是( )A小菊上学一定乘坐公共汽车B某种彩票中奖率为1,买10000张该种票一定会中奖C一
2、年中,大、小月份数刚好一样多D将豆油滴入水中,豆油会浮在水面上2、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D13、下列事件为随机事件的是( )A四个人分成三组,恰有一组有两个人
3、B购买一张福利彩票,恰好中奖C在一个只装有白球的盒子里摸出了红球D掷一次骰子,向上一面的点数小于74、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )ABCD5、下列事件中是不可能事件的是()A铁杵成针B水滴石穿C水中捞月D百步穿杨6、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )A12B15C18D237、在一个口袋中有2个完全相同的小球,它们的标号分别为1
4、,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )ABCD8、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )ABCD9、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( )ABCD10、下列词语所描述的事件,属于必然事件的是( )A守株待兔B水中捞月C水滴石穿D缘木求鱼第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是
5、_2、大数据分析技术为打赢疫情防控阻击战发挥了重要作用如图是小明同学的吉祥码示意图,用黑白打印机打印在边长为2cm的正方形区域内,图中黑色部分的总面积为2.4cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为 _3、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是_4、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的
6、概率是_5、一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球,两个都是黑球的概率_三、解答题(5小题,每小题10分,共计50分)1、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据摸球的次数n1001502005007001000摸到黑球的次数m242960126177251摸到黑球的频率0.240.1930.300.2520.253a(1)根据上表数据计算a_;估计从袋中摸出一个球是黑球的概率是_(精确到0.01)(2)估算袋中白球的个数2、从长为2cm,3cm,4c
7、m,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?3、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是_,那么成活率是_(2
8、)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是_(3)若小王移植10000棵这种树苗,则可能成活_;(4)若小王移植20000棵这种树苗,则一定成活18000棵此结论正确吗?说明理由4、小明每天骑自行车上学,都要通过安装有红、绿灯的4个十字路口假设每个路口红灯和绿灯亮的时间相同(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 (请直接写出答案)5、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均
9、相同(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率-参考答案-一、单选题1、D【分析】必然事件就是一定发生的事件,根据定义即可解答【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度水的密度,所以油一定浮在水面上,是必然事件,符合题意故选:D【点睛】用到的知识点为:必然事件指在一定条件下一
10、定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,
11、并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率3、B【分析】根据事件发生的可能性大小判断【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发
12、生也可能不发生的事件4、C【分析】根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,随机抽取一个球是黄球的概率是故选C【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所有符合条件的情况数是解决本题的关键5、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不
13、符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可【详解】解:设盒子中红球的个数x,根据题意,得:
14、 解得x=12,所以盒子中红球的个数是12,故选:A【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p7、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可【详解】解:列表如下:12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标
15、号之和是3的概率为,故选:B【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率8、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,点数大于2且小于5的有3或4,向上一面的点数大于2且小于5的概率是=,故选:C【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键9、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率【详
16、解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键10、C【分析】根据必然事件就是一定发生的事件逐项判断即可【详解】A守株待兔是随机事件,故该选项不符合题意;B水中捞月是不可能事件,故该选项不符合题意;C水滴石穿是必然事件,故该选项符合题意;D缘木求鱼是不可能事件,故该选项不符合题意故选:C【点睛】
17、本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键二、填空题1、【分析】根据概率的计算公式计算【详解】一枚质地均匀的正方体骰子有6种等可能性,朝上一面的点数是“5”的概率是,故答案为:【点睛】本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键2、【分析】根据几何概率的求解方法:用黑色区域的面积除以正方形面积即可得到答案【详解】解:由题意得:点落入黑色部分的概率为,故答案为:【点睛】本题主要考查了几何概率,解题的关键在于能够熟练掌握几何概率的求解方法3、13【分析】总数量乘以摸到红球的频率的稳定值即可【详解】解:根据题意知,布袋中红球的个数大约是200.
18、6513,故答案为:13【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率4、【分析】画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解【详解】解:根据题意画出树状图,得:共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,所以摸出1根红色缎带1根黄色缎带的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数
19、目m,然后根据概率公式计算事件A或事件B的概率是解题的关键5、【分析】利用树状图法列出所有的等可能性的结果数,然后找到摸到两个黑球的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知,一共有20种等可能性的结果数,其中摸到两个黑球的结果数有6种,P摸到两个都是黑球,故答案为:【点睛】本题主要考查了用树状图或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率三、解答题1、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可【详解】解:(1)251100
20、0=0.251;大量重复试验事件发生的频率逐渐稳定到0.25附近,估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25(2)设袋中白球为x个,x=12,经检验x=12是方程的解,答:估计袋中有2个白球【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近2、【分析】先利用列举法求出所有4种可能的结果数,再分别根据三角形三边的关系找出符合条件的结果数,最后根据概率公式计算即可【详解】解:有4种可能的结果数,它们是:2cm、4cm、5cm;2cm、3cm、5cm;3cm、4cm、5cm;2cm、3cm、4cm,这三条线段能构成一
21、个三角形的结果数为3,所以这三条线段能构成一个三角形的概率【点睛】本题主要考查了三角形的三边关系以及概率公式,根据已知确定可能的结果数和符合条件的结果数是解答本题的关键3、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案(1)解:由表格可知,当移植的
22、棵数是7000时,表格记录成活数是6335,成活率,故答案为:6335;0.905;(2)解:大量重复试验下,频率的稳定值即为概率值,可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵此结论不正确,理由如下:概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义
23、,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率4、(1),见解析(2)【解析】(1)列表如下第一个十字路口第二个红灯绿灯红灯红红红绿绿灯绿红绿绿共有4种等可能情形,满足条件的有1种通过前2个十字路口时都是绿灯的概率(2)画树状图如图,表示红灯,表示绿灯,共有16种等可能情形,满足条件的有11种小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为故答案为:【点睛】本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键5、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是;故答案是:;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为【点睛】本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键