《2022年强化训练北师大版九年级数学下册第三章-圆定向训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆定向训练试题(含答案及详细解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切
2、时,点P的坐标是()ABC或D(2,0)或(5,0)2、下列说法正确的是( )A相等的圆心角所对的弧相等,所对的弦相等B平分弦的直径垂直于弦,并且平分弦所对的弧C等弧所对的圆心角相等,所对的弦相等D圆是轴对称图形,其对称轴是任意一条直径3、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定4、已知O的半径为3,点P到圆心O的距离为4,则点P与O的位置关系是()A点P在O外B点P在O上C点P在O内D无法确定5、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD36、如图,PA是的切线,切点为
3、A,PO的延长线交于点B,若,则的度数为( )A20B25C30D407、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD8、如图,的半径为,AB是的弦,于D,交于点C,且,弦AB的长为( )ABCD9、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD10、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD12第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形ABCDEF内接于O,若
4、O的周长为8,则正六边形的边长为_ 2、已知正多边形的半径与边长相等,那么正多边形的边数是_3、如图,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,点O,B的对应点分别为O,B,连接BB,则图中阴影部分的面积是_4、在半径为3的圆中,60的圆心角所对的劣弧长等于_5、如图,点,均在的正方形网格格点上,过,三点的外接圆除经过,三点外还能经过的格点数为_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是O的直径,连接DE、DB,延长AE交BD的延长线于点M,过点D作O的切线交AB的延长线于点C(1)求证:DEDM;(2)若OACD2,求阴影部分的面积2、在平面直角坐标系x
5、Oy中,点A(0,-1),以O为圆心,OA长为半径画圆,P为平面上一点,若存在O上一点B,使得点P关于直线AB的对称点在O上,则称点P是O的以A为中心的“关联点”(1)如图,点,中,O的以点A为中心的“关联点”是_;(2)已知点P(m,0)为x轴上一点,若点P是O的以A为中心的“关联点”,直接写出m的取值范围;(3)C为坐标轴上一点,以OC为一边作等边OCD,若CD边上至少有一个点是O的以点A为中心的“关联点”,求CD长的最大值3、(1)如图,AB,CD是O的两条平行弦,OECD交O于点E,则弧AC 弧BD(填“”,“”,“”或“=”);(3)如图,PAB是O的内接三角形,QPA是它的外角,在
6、弧AP上有一点G,满足PG平分QPA,请用无刻度的直尺,画出线段PG(不要求证明)4、如图1,AB为圆O直径,点D为AB下方圆上一点,点C为弧ABD中点,连结CD,CA(1)若,求的度数;(2)如图2,过点C作于点H,交AD于点E,求(用含的代数式表示);(3)在(2)的条件下,若,求线段DE的长5、如图,已知抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l与抛物线交于A,D两点,点D的坐标为,与y轴交于点E(1)求A,B两点的坐标及直线l的解析式;(2)若点P在直线l下方抛物线上,过点P作轴于点M,直线与直线l交于点N,当点M是的三等分点时,求点P的坐标;(3)若点H是
7、抛物线对称轴上的一点,且,请直接写出点H的坐标-参考答案-一、单选题1、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的
8、判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键2、C【分析】根据圆心角、弧、弦的关系对AC进行判断;根据垂径定理的推论对B进行判断;根据对称轴的定义对D进行判断【详解】解:A、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以本选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以本选项错误;C、等弧所对的圆心角相等,所对的弦相等,所以本选项正确;D、圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以本选项错误;故选:C【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、
9、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了垂径定理3、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键4、A【分析】根据点与圆心的距离与半径的大小关系即可确定点P与O的位置关系【详解】解:O的半径分别是3,点P到圆心O的距离为4,dr,点P与O的位置关系是:点在圆外故选:A【点睛】本题主要考查了点与圆的
10、位置关系,准确分析判断是解题的关键5、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30又AB=6,ABA=30故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键6、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=O
11、B,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系7、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的性质,可得OAB=30,然后根据锐角三角函数,即可求解【详解】解:如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30,在中, ,AB=3,即这个正三角形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是
12、解题的关键8、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出,即可利用勾股定理求出,即可得到答案【详解】解:如图所示,连接OA,半径OCAB,AB=2AD,ODA=90,故选:A【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键9、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分A
13、CD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键10、C【分析】如图(见解析),先分别求出扇形、和的圆心角的度数,再利用弧长公式即可得【详解】解:如图,扇形、和的圆心角的度数均为,扇形和的圆
14、心角的度数均为,则图中扇形的弧长总和,故选:C【点睛】本题考查了求弧长,熟记弧长公式(,其中为弧长,为圆心角的度数,为扇形的半径)是解题关键二、填空题1、4【分析】由周长公式可得O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长【详解】O的周长为8O半径为4正六边形ABCDEF内接于O正六边形ABCDEF中心角为正六边形ABCDEF为6个边长为4的正三角形组成的正六边形ABCDEF边长为4.故答案为:4【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六
15、边形ABCDEF为6个边长为4的正三角形组成的是解题的关键2、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则OAB是等边三角形,得到AOB=60,则,由此即可得到答案【详解】解:设这个正多边形的边数为n,正多边形的半径与边长相等,OA=OB=AB,OAB是等边三角形,AOB=60,正多边形的边数是六,故答案为:六【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键3、【分析】连接,证明是含30的,根据即可求解【详解】解:如图,连接,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,,是等边三角形,三点共线,是等边三角形又【点睛】本
16、题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键4、【分析】弧长公式为l,把半径和圆心角代入公式计算就可以求出弧长【详解】解:半径为3的圆中,60的圆心角所对的劣弧长,故答案为:【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式5、5【分析】根据圆的确定方法做出过A,B,C三点的外接圆,从而得出答案【详解】如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则O即为过A,B,C三点的外接圆,由图可知,O还经过点D、E、F、G、H这5个格点,故答案为5【点睛】此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心三、解答题
17、1、(1)见详解;(2)【分析】(1)连接AD,根据弦、弧之间的关系证明DB=DE,证明AMDABD,得到DM=BD,得到答案(2)连接OD,根据已知和切线的性质证明OCD为等腰直角三角形,得到DOC=45,根据S阴影=SOCD-S扇OBD计算即可;【详解】解:(1)如图,连接AD,AB是O直径,ADB=ADM=90,又,ED=BD,MAD=BAD,在AMD和ABD中,AMDABD,DM=BD,DE=DM;(2)如上图,连接OD,CD是O切线,ODCD,OA=CD=,OA=OD,OD=CD=,OCD为等腰直角三角形,DOC=C=45,S阴影=SOCDS扇OBD=;【点睛】本题考查的是切线的性质
18、、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法2、(1)P1,P2;(2);(3)【分析】(1)根据题意,点的对称点的轨迹是以为圆心2为半径的圆,则平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,据此即可判断;(2)根据(1)的结论求得与轴的交点即可求解;(3)根据题意可知,平面上满足条件的点P在以A为圆心2为半径的圆上或圆内,根据题意求的最大值,即求得的最大值,故当点位于轴负半轴时,画出满足条件的等边三角形OCD,进而根据切线的性质以及解直角三角形求解即可【详解】(1)根据题意,点的对称点的轨迹是以为圆心2为半径的圆,则平面上满足条
19、件的点P在以A为圆心2为半径的圆上或圆内,由图可知符合条件,故答案为:P1,P2;(2)如图,设与坐标轴交于点,,则;(3)如图,由题意可知,平面上满足条件的点P在以A为圆心2为半径的圆上或圆内因此满足条件的等边三角形OCD如图所示放置时,CD长度最大,设切点为G,连接AGAGC=90,OCD=60,AG=2【点睛】本题考查了轴对称的性质,解直角三角形,切线的性质,等边三角形的性质,从题意分析得出“点的对称点的轨迹是以为圆心2为半径的圆”是解题的关键3、(1)=;(2)=;(3)作图见详解【分析】(1)连接AO,BO,CO,DO,根据平行线及垂直的性质可得,由垂径定理可得OE平分,得出,利用各
20、角之间的关系可得,由圆心角相等,即可得出弧相等;(2)连接OA、OB,由及垂径定理可得,利用圆周角是圆心角的一半即可得;(3)连接AD、CB交于点H,连接HO并延长交于点G,连接PG,由,可得,由垂径定理可得:点H在线段AB、CD的垂直平分线上,连接HO并延长交于点G,得出点G恰好平分,即点G恰好平分与所对的圆周角的和,由此即可得出【详解】解(1)如图所示:连接AO,BO,CO,DO,OE平分,即,故答案为:=;(2)如图所示:连接OA、OB,故答案为:=;(3)如图所示:连接AD、CB交于点H,连接HO并延长交于点G,连接PG,即为所求,根据图可得:即,由垂径定理可得:点H在线段AB、CD的
21、垂直平分线上,连接HO并延长交于点G,则点G恰好平分,即点G恰好平分与所对的圆周角的和,PG即为所求【点睛】题目主要考查垂径定理的应用及圆周角定理,角平分线的性质等,理解题意,作出相应辅助线,结合垂径定理是解题关键4、(1)35;(2);(3)【分析】(1)连结AD,BC,可得,再由C为弧ABD中点,可得到从而得到,再由AB为圆O直径,得到 ,即可求解;(2)连BC,可得,从而得到,再由,即可求解;(3)连接CO并延长交AD于F,由垂径定理推论,可得,再由(2),从而得到,进而得到 ,再由勾股定理可得,再由可得,解得,即可求解【详解】解:(1)连结AD,BC,C为弧ABD中点, ,AB为圆O直
22、径, , ;(2)连BC,点C为弧ABD中点, , AB为直径,又, ,;(3)连接CO并延长交AD于F,C为弧ABD中点,由(2),由, , , , ,即,【点睛】本题主要考查了圆周角定理,垂径定理相似三角形的性质和判定等知识,熟练掌握相关知识点是解题的关键5、(1)A(1,0),B(3,0),;(2)点P的坐标为(2.5,1.75)或(1,4);(3)点H的坐标为(1,5)或(1,4).【分析】(1)先令y0时,x13,x21. ,即可得到A、B的坐标,然后设直线l解析式为,代入A、D坐标求解即可;(2)根据题意设点P坐标为(m,),则点N(m,),然后分PM,且P只能在x轴的下方,这两种
23、情况讨论求解即可;(3)过点D作DGx轴于G,可得AG=BG=5,AGD=90,再由AHD=45,则点在以G为圆心,以5为半径的圆上,且H在AD下方,设的坐标为(1,n),则,即可求出的坐标为(1,-4);同理当H在AD上方时,H在以(-1,5)为圆心,5为半径的圆上,由此即可得到答案【详解】(1)当y0时,解得x13,x21. A(1,0),B(3,0).设直线l解析式为, l经过D(4,5),A(1,0), , 直线l解析式为;(2)根据题意设点P坐标为(m,),则点N(m,), 点M是PN的三等分点,点P在直线l下方抛物线上, PM,且P只能在x轴的下方, PM,PN,当PM时,则,解得
24、m12.5,m21(舍去), P的坐标为(2.5,1.75);当PM时,则,解得m11,m21(舍去), P的坐标为(1,4) , 综上所述,点P的坐标为(2.5,1.75)或(1,4);(3)如图所示,过点D作DGx轴于G,G点坐标为(4,0),AG=BG=5,AGD=90,AHD=45,点在以G为圆心,以5为半径的圆上,且H在AD下方,设的坐标为(1,n),或(舍去),的坐标为(1,-4);同理当H在AD上方时,H在以(-1,5)为圆心,5为半径的圆上,设H的坐标为(1,t),或(舍去),H的坐标为(1,5);综上所述,点H的坐标为(1,5)或(1,4)【点睛】本题主要考查了求二次函数与x轴的交点,求一次函数解析式,圆周角定理,两点距离公式,解题的关键在于能够熟练掌握相关知识进行求解