《2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习试卷(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十九章-投影与视图同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列立体图形的主视图是()ABCD2、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)
2、5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC()A7.2B6.6C5.7D7.53、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个
3、D4个4、根据三视图,求出这个几何体的侧面积( )ABCD5、一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )ABCD6、如图所示的礼品盒的主视图是( )ABCD7、如图所示的几何体的左视图为()ABCD8、如图,是空心圆柱体,其主视图是下列图中的( )ABCD9、下列几何体中,其三视图完全相同的是( )ABCD10、如图所示的几何体的主视图为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示问:最少需要_个小正方体木块,最多需要_个小正方体木块2、如图是某几何体的三视图(其中主视图也称正视图,
4、左视图也称侧视图)已知主视图和左视图是两个全等的矩形若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为_3、一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为_4、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号 5、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为_(结果保留) 从正面看 从左面看 从上面看三、解答题(5小题,每小题10分,共计50分)1、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数(1)请你分别画出
5、从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_个小立方块;(3)图中的几何体的表面积(包括与桌面接触的部分)为_;若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_,_2、补全如图立体图形的三视图3、如图是由若干个完全相同的小正方体堆成的几何体(1)图中有几个小正方体;(2)画出该几何体的三视图;4、由7个相同的小立方块搭成的几何体
6、如图所示,(1)请画出从它的正面、上面、左面看到的图形(2)计算它表面积(棱长为1),5、如图是用10块完全相同的小正方体搭成的几何体(1)请在空白的方格中分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)若保持从正面和从上面看到的形状图不变,最多还可以再搭 块小正方体-参考答案-一、单选题1、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可【详解】
7、解:AEOD,OGOD,AE/OG,AEB=OGB,EAB=GOB,AEBOGB,即 ,解得:AB2m;OA所在的直线行走到点C时,人影长度增长3米,DCAB+3=5m,OD=OA+AC+CD=AC+10,FCGO,CFD=OGD,FCD=GOD,DFCDGO,即,解得:AC7.5m所以小方行走的路程为7.5m故选择:D【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键3、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形
8、可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC604、D【分析】首先根据题意得出
9、这个几何体是圆柱,然后根据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为故选:D【点睛】此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式5、B【分析】根据平行投影的性质求解可得【详解】解:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影6、B【分析】找出从几何体的正面看所得到的图形即可【详解】解:从礼品盒的正面看,可得图形:故选:B
10、【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置7、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键8、C【分析】从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.【详解】主视图是在几何体正面面观察物体得到的图形能够看见的部分用实线表示,不能看见的部分用虚线表示本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线故选:C【点睛】本题主要考查三视图, 主视图是在物体正面从前向后观察
11、物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形9、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体10、A【分析】根据主视图是从物体的正面看得到的视图即可求解【详解】解:主视图如下故选:A【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提二、填空题
12、1、 10 16【解析】【分析】综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有23=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块【详解】解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,故这个几何体最少有10个小正方形,最多有16个,故答案为:10,16【点睛】本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地
13、基,正视图疯狂盖,左视图拆违章”得出结果2、【解析】【分析】由三视图判断出几何体的形状以及相关长度,根据圆柱的体积公式计算即可【详解】解:由三视图可知:该几何体是圆柱,该圆柱的底面直径为2,高为3,这个几何体的体积为=,故答案为:【点睛】本题考查了几何体的三视图,圆柱的体积,解题的关键是判断出该几何体为圆柱3、15【解析】【分析】由三视图可知这个立体图形是底面半径为3,高为4的圆锥,利用勾股定理求出其母线长,据此可以求得侧面积【详解】由三视图可知圆锥的底面半径为3,高为4,所以母线长为=5,所以侧面积为=35=15,故答案为:15【点睛】本题主要考查了由三视图确定几何体和求圆锥的侧面积,涉及勾
14、股定理,牢记公式是解题的关键,难度不大4、【解析】【分析】在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可【详解】根据三视图的定义可知:第一个三视图所对应的几何体为;第二个三视图所对应的几何体为;第三个三视图对应的几何体为;第四个三视图对应的几何体为;故答案为:【点睛】本题考查三视图,熟知三视图的定义是解题的关键5、【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积故答案为:【点睛】
15、本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高三、解答题1、(1)见解析;(2)12;(3)1400;1250,1550【分析】(1)根据三视图可画出几何体的形状图;(2)根据正方体的性质,每行每列的小正方体都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;(3)从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,
16、按图计算即可【详解】解:(1)由已知可得:(2)根据正方体的性质,每行每列都是3个小正方体,已知有(个)(个),故答案为:12;(3)小正方体的棱长为5cm,小正方形的面积为,几何体表面积为,故答案为:;如图搭建此时表面积为最小,几何体最小表面积为;如图搭建此时表面积为最大,几何体最大表面积为;故答案为:,【点睛】本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键2、见解析【分析】根据简单几何体的三视图的画法,画出相应的图形即可,注意看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示【详解】解:补
17、全这个几何体的三视图如下:【点睛】本题考查了简单几何体的三视图,理解视图的意义,掌握简单几何体的三视图的画法是正确解答的前提3、(1)10;(2)见解析【分析】(1)分别数出每层的小正方体的个数并相加即可;(2)按要求画出三视图即可【详解】(1)1+3+6=10(个)即图中共有10个小正方体(2)所画的三视图如下:【点睛】本题主要考查了三视图、求几何体的小正方体的个数,要求较好的空间想象能力4、(1)见详解;(2)28【分析】(1)根据三视图的定义及其分布情况作图可得;(2)将三个方向上的面积相加,再乘以2,然后加上凹进去的两个面可得其表面积【详解】解:(1)该几何体的三视图如图所示:(2)其表面积为2(553)228【点睛】本题主要考查作图三视图,解题的关键是熟练掌握三视图的定义及表面积的求法5、(1)见解析;(2)3【分析】(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;(2)可在最左侧前端放两个后面再放一个即可得出答案【详解】解:(1)该组合体的三视图如图所示:(2)在俯视图的相应位置最多添加相应数量的正方体,如图所示:最多还可以再搭3块小正方体【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键