2022年精品解析北师大版九年级数学下册第二章二次函数定向测评试卷(名师精选).docx

上传人:可****阿 文档编号:30701128 上传时间:2022-08-06 格式:DOCX 页数:26 大小:728.99KB
返回 下载 相关 举报
2022年精品解析北师大版九年级数学下册第二章二次函数定向测评试卷(名师精选).docx_第1页
第1页 / 共26页
2022年精品解析北师大版九年级数学下册第二章二次函数定向测评试卷(名师精选).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2022年精品解析北师大版九年级数学下册第二章二次函数定向测评试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版九年级数学下册第二章二次函数定向测评试卷(名师精选).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第二章二次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于二次函数的说法正确的是( )A当时,随着的增大而增大B当时,有最小值为2C该函数图象与轴有两个交点D该函

2、数图象可由抛物线向左平移6个单位,再向上平移2个单位得到2、如果将抛物线yx2+2先向左平移1个单位,再向下平移1个单位,那么所得新抛物线的表达式是()Ay(x1)2+2By(x+1)2+1Cyx2+1Dy(x+1)213、二次函数的最大值是( )A5BCD14、已知二次函数(m为常数),当时,函数值y的最小值为-2,则m的值为( )AB或C或D或5、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 26、小轩从如图所示的二次函数yax2bxc(a0)的图象中,观察得出了下面五条信息:abc0;abc0;4acb20;ab;b2c0你认为其中正确信

3、息的个数有( )A2B3C4D57、将抛物线通过平移后得到,则这个平移过程正确的是( )A向右平移2个单位,向下平移1个单位B向左平移2个单位,向下平移1个单位C向右平移2个单位,向上平移1个单位D向左平移2个单位,向上平移1个单位8、如图,抛物线yax2+bx+c交x轴分别于点A(3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C下列结论:2ab0;a+b+c0;当m1时,abam2+bm;当ABC是等腰直角三角形时,a;若D(0,3),则抛物线的对称轴直线x1上的动点P与B、D两点围成的PBD周长最小值为3+10其中,正确的个数为()A2个B3个C4个D5个9、下列各式中,是的二次

4、函数的是( )ABCD10、已知二次函数y(xm)2m+1(m为常数)二次函数图象的顶点始终在直线yx+1上 当x2时,y随x的增大而增大,则m=2点A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1+x22m,则y1y2 其中,正确结论的个数是( )A0个B1个C2个D3个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果关于x的一元二次方程有两个实数根,且满足,则称这样的方程为“根差方程”,以下关于根差方程的说法,正确的是_(写序号)方程是根差方程;若是根差方程,则;若根差方程满足,则点到坐标原点的距离是2;若方程是根差方程且相异两点,都在抛物线上

5、,则方程的两根分别为3和62、某种产品今年的年产量是20t,计划今后两年增加产量如果每年的产量都比上一年增加x倍,两年后这种产品的产量y与x之间的函数表达式是_3、将抛物线向上平移一个单位长度,得到的抛物线的表达式为_4、如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,过点C作CDx轴交抛物线于点D若AB+CD=6,则抛物线的解析式为_5、将二次函数的图像向上平移一个单位,再向右平移两个单位后,所得图像的函数解析式为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,已知抛物线(1)求它的顶点坐标;(2)求它与x轴的交点坐标2、在平面直角坐标系xO

6、y中,点(1,m)和(2,n)在抛物线上(1)若m0,求该抛物线的对称轴;(2)若mn0,设抛物线的对称轴为直线,直接写出的取值范围;已知点(1,y1),(,y2),(3,y3)在该抛物线上比较y1,y2,y3的大小,并说明理由3、在平面直角坐标系中 ,抛物线与y轴交于点A,其对称轴与x轴交于点B,一次函数的图象经过点A,B(1)求一次函数的表达式;(2)当时,对于x的每一个值,函数的值大于一次函数的值,直接写出n的取值范围4、如图,在平面直角坐标系xOy中,抛物线yax2+2xc的部分图象经过点A(0,3),B(1,0) (1)求该抛物线的解析式;(2)结合函数图象,直接写出y0时,x的取值

7、范围5、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_千克;(2)按此市场调节的观律,若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完

8、好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由-参考答案-一、单选题1、B【分析】根据二次函数的性质,增减性质可判断A,函数最值可判断B,函数图像的位置可判断C,利用平移的方向可判断D【详解】解:二次函数抛物线开口向上,当时,抛物线y随x增大而增大,故选项A不正确;当时,有最小值为2,故选项B正确;函数图像都在x轴上方,与x轴没有交点,故选项C不正确;该函数图象可由抛物线向右平移6个单位,再向上平移2个单位得到,故选项D不正确故选B【点睛】本题考查二次函数的性质,掌握二次函数的性质,以及平移法则上加下减,左加右减是解题关键2、B【分析】先求出平移后的抛物线的

9、顶点坐标,再利用顶点式抛物线解析式写出即可【详解】抛物线的顶点坐标为,向左平移1个单位,向下平移1个单位后的抛物线的顶点坐标为,平移后的抛物线的解析式为故选:B【点睛】本题考查了二次函数图象与几何变换,根据规律利用点的变化确定函数解析式是解题的关键3、A【分析】根据二次函数的图象与性质求解即可【详解】解:该二次函数的顶点式为,且a=10,该函数的图象开口向下,且顶点坐标为,该二次函数的最大值为5,故选:【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的性质是解答的关键4、B【分析】将二次函数配方成顶点式,分m-2、m1和-2m1三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【

10、详解】解:y=x2-2mx=(x-m)2-m2, 若m-2,当x=-2时取得最小值,此时y=4+4m=-2, 解得:m=; m=-2(舍去); 若m1,当x=1时取得最小值,y=1-2m=-2, 解得:m=; 若-2m1,当x=m时取得最小值,y=-m2=-2, 解得:或(舍), m的值为 或, 故选:B【点睛】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解本题的关键5、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键6、B

11、【分析】利用函数图象分别求出a,b,c的符号,进而得出x1或1时y的符号,进而判断得出答案【详解】解:图象开口向下,a0,对称轴x,3b2a,则ab,b0,图象与x轴交于y轴正半轴,c0,abc0,故选项错误;选项正确;由图象可得出:当x1时,y0,abc0,故选项正确;抛物线与x轴有两个交点,则b24ac0,则4acb20,故选项错误;当x1时,yabc0,bbc0,b2c0,故选项正确;故正确的有3个故选:B【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用7、B【分析】直接利用二次函数平移规律进而得出答

12、案【详解】解:抛物线的顶点坐标为(1,0)抛牪线的顶点坐标为(-1,-1)把点(1,0)先向左平移2个单位,再向下平移1个单位得到(-1,-1)将抛物线向左平移2个单位,再向下平移1个单位可得到故选:B【点睛】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键8、C【分析】根据二次函数的性质,等腰直角三角形的性质,两点之间线段最短一一判断即可【详解】解:抛物线yax2+bx+c交x轴分别于点A(3,0),B(1,0),a+b+c0,故正确;对称轴为直线x1,1,2ab0,故正确;由图象可知,当x1时,y有最大值,最大值ab+c,m1,ab+cam2+bm+c,abam2+bm,故

13、正确,A(3,0),B(1,0),AB4,ABC是等腰直角三角形时,C(1,2),可设抛物线的解析式为ya(x+1)2+2,把(1,0)代入得到a,故正确,如图,连接AD交抛物线的对称轴于P,连接PB,此时BDP的周长最小,最小值PD+PB+BDPD+PA+BDAD+BD,AD3,BD,PBD周长最小值为3,故错误故选:C【点睛】本题考查二次函数的性质,等腰直角三角形的性质,解题的关键是熟练掌握二次函数的性质、灵活运用数形结合思想,属于中考常考题型9、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符合题意;D、,

14、不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点10、B【分析】由顶点坐标(m,-m+1),可得x=m,y=-m+1,即可证明顶点在直线y=-x+1上;根据二次函数的性质,当时,y随x的增大而增大,可知;由,根据已知可以判断,即可判断【详解】解:证明: 图象的顶点为(m,-m+1),设顶点坐标为(x,y),则x=m,y=-m+1,y=-x+1,即顶点始终在直线y=-x+1上, 正确;,对称轴,当时,y随x的增大而增大,时,y随x的增大而增大, 不正确; 与点 在函数图象上,x1x2,x1+x22m, 不正确故选:B【

15、点睛】本题考查二次函数图像和性质,函数值大小比较等,解题的关键是掌握一元二次方程根与系数的关系及做差法比较大小二、填空题1、【分析】利用因式分解法解方程,验证即可;利用因式分解法解方程,得,求出m的值,代入验证即可;由题意,可得,从而推出,与题给条件进行比较即可;由题意,不妨设,求出抛物线对称轴为,于是,解得,即可得到结论【详解】解:解方程得:,方程不是根差方程,故错误;若是根差方程,解得根为:,或,解得或,故正确;点到坐标原点的距离是2,可得:,由根差方程,可得,可得:,因为,故错误;方程是根差方程,不妨设为较大根,则有,相异两点,都在抛物线上,抛物线的对称轴,解得,故正确故答案为【点睛】本

16、题考查了新定义问题,一元二次方程根与系数的关系,一元二次方程的解法因式分解法,二次函数图象上点的坐标特征,坐标到原点的距离,正确的理解“根差方程”的定义是解题的关键2、【分析】根据每年的产量都比上一年增加x倍,列出函数解析式,即可求解【详解】解:根据题意得:故答案为:【点睛】本题主要考查了二次函数的实际应用,明确题意,准确得到数量关系是解题的关键3、【分析】根据“左加右减,上加下减”的平移规律即可得答案【详解】抛物线向上平移1个单位长度,抛物线平移后的表达式为,故答案为:【点睛】本题考查二次函数图象的平移,熟练掌握“左加右减,上加下减”的平移规律是解题关键4、【分析】根据题意可得的横坐标为一元

17、二次方程的两个解,进而求得,结合AB+CD=6,求得,的横坐标为一元二次方程的两根,进而根据一元二次方程根与系数的关系即可求得,进而求得,即可求得解析式【详解】解:,抛物线与x轴交于点A、B,与y轴交于点C,过点C作CDx轴交抛物线于点D则的横坐标为一元二次方程的两个解,即解得 AB+CD=6,依题意,的横坐标为一元二次方程的两根,即即即解得故答案为:【点睛】本题考查了二次函数与坐标轴的交点,一元二次方程根与系数的关系,理解线段长的含义是解题的关键5、【分析】根据“左加右减,上加下减”的法则即可得出结论【详解】解:二次函数的图象向上平移一个单位,再向右平移两个单位后,所得二次函数的解析式为故答

18、案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键三、解答题1、(1);(2)【分析】(1)把抛物线化为顶点式即可;(2)令 则再利用因式分解法解一元二次方程即可.【详解】解:(1)所以抛物线的顶点坐标为: (2)令 则 或 解得: 所以抛物线与x轴的交点坐标为:【点睛】本题考查的是求解抛物线的顶点坐标,抛物线与轴的交点坐标,掌握“把抛物线化为顶点式以及把代入抛物线求解与x轴的交点坐标”是解本题的关键.2、(1);(2);,见解析【分析】(1)把点(1,m),m0,代入抛物线,利用待定系数法求解解析式,再利用公式求解抛物线的对称轴方程;(2)先

19、判断异号,求解抛物线的对称轴为: 抛物线与轴的交点坐标为:根据点(1,m)和(2,n)在抛物线上,则 可得 从而可得答案;设点(1,y1)关于抛物线的对称轴的对称点为,再判断结合抛物线开口向下,当时,y随x的增大而减小,从而可得答案.【详解】解:(1)点(1,m)在抛物线上,m0,所以抛物线为: 该抛物线的对称轴为(2) 则异号,而抛物线的对称轴为: 令 则 解得: 所以抛物线与轴的交点坐标为: 点(1,m)和(2,n)在抛物线上, 即 理由如下:由题意可知,抛物线过原点设抛物线与x轴另一交点的横坐标为x抛物线经过点(1,m),(2,n),mn01x2设点(1,y1)关于抛物线的对称轴的对称点

20、为点(1,y1)在抛物线上,点也在抛物线上由 得,12t222t13由题意可知,抛物线开口向下当时,y随x的增大而减小.点(,y2),(3,y3)在抛物线上,且,【点睛】本题考查的是利用待定系数法求解抛物线的解析式,抛物线的对称轴方程,抛物线的对称性与增减性,掌握“利用抛物线的增减性判断二次函数值的大小”是解本题的关键.3、(1);(2)n【分析】(1)分别求出点A,B的坐标,代入一次函数的解析式,求出k,b的值即可;(2)分别画出函数图象,根据图象判断n的取值即可【详解】解:(1)抛物线与y轴交于点A,令x=0,则y=-1A(0,1).抛物线的对称轴为:B(2,0).+b过A(0,1),B(

21、2,0), 一次函数的表达式为. (2)如图,根据题意知,直线与直线的交点坐标为(-3,)此时, 当时, 从图象可以看出,当时,且n,对于x的每一个值,函数的值大于一次函数的值【点睛】本题考查了函数图象的平移,一次函数的图象,二次函数的性质,熟练掌握函数的图象与性质是解题的关键4、(1);(2)【分析】(1)利用待定系数法求抛物线解析式,将坐标代入解析式得出解方程组即可;(2)先求抛物线与x轴的交点,转化求方程的解,再根据函数y0,函数图像位于x轴下方,在两根之间即可【详解】解:(1) 抛物线经过点A(0,3),B(1,0) 代入坐标得:,解得,所求抛物线的解析式是(2) 当y=0时,因式分解

22、得:,当y0时,函数图像在x轴下方,y0时,x的取值范围为-3x1【点睛】本题考查待定系数法求抛物线解析式,利用图像法解不等式,解一元二次方程,方程组,掌握待定系数法求抛物线解析式,利用图像法解不等式,解一元二次方程,方程组是解题关键5、(1)9000千克;(2)当售价定为16.5元/千克,日销售量为875千克,理由见解析;最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可(2)根据表格求出销售量y与售价x的函数关系式,代入x=16.

23、5计算即可;12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为千克(2)设销售量y与售价x的函数关系式为由题意可得函数图像过及两点得与的函数关系式为把代入,当售价定为16.5元/千克,日销售量为875千克依题意得:12天内售完9000千克柑橘故日销售量至少为:(千克)解得设利润为w元,则对称轴为当时w随x的增大而增大当时销售利润最大,最大利润为(元)【点睛】此题考查了利用频率估计概率,以及二次函数销售利润问题解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)销售量求出利润与售价的函数关系式

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁