《精品试卷京改版九年级数学下册第二十五章-概率的求法与应用专项测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试卷京改版九年级数学下册第二十五章-概率的求法与应用专项测评试题(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别从袋中随机摸出1个球是红球的概率为( )ABCD
2、2、如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是( ) ABCD3、有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了5个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则盒中白色小球的个数可能是( )A16个B20个C24个D25个4、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.3
3、20.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A甲正确,乙错误B甲错误,乙正确C甲、乙均正确D甲、乙均错误5、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()ABCD6、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为()ABCD7、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相
4、同现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( )ABCD8、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是()A1B1CD19、一个袋子中放有4个红球和6个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率是( )ABCD10、将7个分别标有数字3,2,1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数yx23x+m2与x轴有交点,且关于x的分式方程有解的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20
5、分)1、一个布袋里装有2个只有颜色不同的球,其中1个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球是一白一红的概率是_2、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):射击的次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率0.760.830.780.790.800.80根据试验所得数据,估计“射中9环以上”的概率是 _3、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下
6、颜色,再把它放回盒子中,不断重复上述过程整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_4、即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,两次抽取的卡片图案相同的概率是_5、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为_三、解答题(5小题,每小题10分,共计
7、50分)1、口袋里有除颜色外其它都相同的6个红球和4个白球(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A如果事件A是必然事件,请直接写出m的值如果事件A是随机事件,请直接写出m的值(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值2、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球(1)请列举出所有可能结果;(2)求取出的两个小球标号和等于5的概率3、如图,转盘黑色扇形和白色扇形的圆心角分别为120和240(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转
8、盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率(注:当指针恰好指在分界线上时,无效重转)4、一个不透明的盒子中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)从盒子里随机摸出一个小球,其中标号是奇数的概率是 ;(2)先从盒子中随机摸出一个小球然后放回,再随机摸出一个小球,请用列表法或树状图法求两次摸出的小球标号的和小于5的概率;(3)从盒子中随机同时摸出两个小球,则摸出的小球标号的和大于4的概率是 5、某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是_(2)用树状图或列表
9、法表示乙同学随机选择两天,其中有一天是星期二的概率是多少?-参考答案-一、单选题1、A【分析】根据概率公式计算即可【详解】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为,故选:A【点睛】此题考查了概率的计算公式,正确掌握计算公式是解题的关键2、B【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率【详解】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是26故选:B【点睛】本题考查了几何概率用到的知识点为:概率=相应的面积与总面积之比3、B【分析】根据“黑球数量黑白球总数=黑
10、球所占比例”来列等量关系其中,“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数总共摸球的次数”【详解】设盒子里有白球x个,根据题意得:,解方程得x=20,经检验x=20是原方程的根,即盒中大约有白球20个故选B【点睛】本题考查盒中白球个数问题,掌握频率、频数与总数的关系,会用频率列方程解决问题是关键4、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可【详解】由表可知该种结果出现的概率约为掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6向上的点数与4相差1有3、5掷一枚质地均匀的骰子,向上的点数与4相差1的概率为甲的答案正确又“石头、剪刀
11、、布”的游戏中,琪琪随机出的是“剪刀”概率为乙的答案正确综上所述甲、乙答案均正确故选C【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率5、B【分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是.故选:B【点睛】本题考查概率的求法,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可【详
12、解】解:装有7个只有颜色不同的球,其中4个黑球,从布袋中随机摸出一个球,摸出的球是黑球的概率故选:C【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键7、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案【详解】解:有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比8、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影
13、部分面积与正方形面积的比,由此进行求解即可【详解】解:如图所示,设正方形ABCD的边长为a,四边形ABCD是正方形,C=90, ,石子落在阴影部分的概率是,故选A【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比9、C【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:袋子里装有10个球,4个红球,6个白球,摸出红球的概率:故选:C【点睛】本题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,
14、其中事件A出现m种结果,那么事件A的概率P(A)=10、B【分析】根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解【详解】解:与x轴有交点,则,解得:,有解,则,即,在中,满足且有:,共5个,有概率公式知概率为:,故选:B【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数二、填空题1、#【分析】先列表得到所有的等可能的结果数,一红一白的结果数,再利用概率公式计算即可.【详解】解:列表如下:白红白白,白白,红红红,白红,红所有的等可能的结果数由4种,一红一白的结果数有2种,所有两次摸到的球是
15、一白一红的概率是 故答案为:【点睛】本题考查的是简单随机事件的概率,列表是解题的关键;用到的知识点为:概率=所求情况数与总情况数之比2、0.8【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率【详解】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8故答案为:0.8【点睛】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计
16、概率3、【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率4、【分析】画树状图,共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,再由概率公式求解即可【详解】把吉祥物“宸宸”、“琮琮”、“莲莲”三张卡片分别记为A、B、C,画树状图如图:共有9种等可能的结果,两次抽取的卡片图案相同的结果有3种,两次抽取的卡片图案相同的概率为,故答案为:【点睛】此题考查了列表法与树状图法;正确画出树状图是解题的关键,用到
17、的知识点为:概率所求情况数与总情况数之比5、【分析】画树状图表示所有等可能的结果,再计算点在直线上的概率【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为,故答案为:【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键三、解答题1、(1)4;1或2或3;(2)【分析】(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;(2)根据题
18、意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为 再根据概率公式,即可求解【详解】解:(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球, ; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球, 此时有白球 1个或2个或3个,即m的值为1或2或3;(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为根据题意得:,【点睛】本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可
19、能不发生的事件,概率公式是解题的关键2、(1)见详解;(2).【分析】(1)根据题意通过列出相应的表格,即可得出所有可能结果;(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.【详解】解:(1)由题意列表得:12341-(2,1)(3,1)(4,1)2(1,2)-(3,2)(4,2)3(1,3)(2,3)-(4,3)4(1,4)(2,4)(3,4)-所有可能的结果有12种;(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,所以取出的两个小球标号和等于5的概率.【点睛】本题考查的
20、是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比3、(1);(2)见解析,【分析】(1)将120作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得【详解】解:(1)将120作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;(2)设白色扇
21、形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比4、(1);(2);(3)【分析】(1)根据概率的意义,共有4种等可能出现的结果情况,其中标号为奇数的有2种,可求出相应的概率;(2)用列表法表示先摸出一个小球放回后再随机摸出一个小球,所有可能出现的结果情况,得出两次摸出的小球标号的和小于
22、5的结果数,进而求出概率;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案【详解】解:(1)从标号为1、2、3、4的小球中,随机摸出一球,共有4种等可能出现的结果情况,其中标号为奇数的有2种,所以随机摸出一个小球,其标号是奇数的概率是,故答案为:;(2)先从盒子中随机摸出一个小球然后放回,再随机摸出一个小球,所有可能出现的结果情况如下:共有16种等可能出现的结果,其中两次摸出的小球标号的和小于5的有6种,所以P两次摸出的小球标号的和小于5=,故答案为:;(3)随机同时摸出两个小球,所有可能出现的结果情况如下:共有12种
23、等可能出现的结果,其中两次摸出的小球标号的和大于4的有8种,所以P两次摸出的小球标号的和大于4=【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键5、(1);(2)【分析】(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果;(2)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果【详解】解:(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),则甲同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:;(2) 画树状图如图所示:共有种等可能的结果,其中有一天是星期二的结果有种,甲同学随机选择两天,其中有一天是星期二的概率为;【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率