数学必修一5知识点总结:人教版高一数学必修一知识点总结.doc

上传人:Wo****Z 文档编号:30675567 上传时间:2022-08-06 格式:DOC 页数:8 大小:18.50KB
返回 下载 相关 举报
数学必修一5知识点总结:人教版高一数学必修一知识点总结.doc_第1页
第1页 / 共8页
数学必修一5知识点总结:人教版高一数学必修一知识点总结.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《数学必修一5知识点总结:人教版高一数学必修一知识点总结.doc》由会员分享,可在线阅读,更多相关《数学必修一5知识点总结:人教版高一数学必修一知识点总结.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学必修一5知识点总结:人教版高一数学必修一知识点总结要多练习,知道自己的不足,对大家的学习有所帮助,下面是wtt网.chinawenwang.WTT整理的人教版高一数学必修一知识点总结,供大家参考!人教版高一数学必修一知识点总结高一数学必修1第一章知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示: . 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2) 集合的表示方法:列举法与描述法。 u 注意:

2、常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:a,b,c. 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xÎR| x-3>2 ,x| x-3>2 3) 语言描述法:例:不是直角三角形的三角形 4) Venn图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:x|x2=-5二、集合间的基本关系1.“包含”关系子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

3、反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等” 即: 任何一个集合是它本身的子集。AÍA 真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作A B(或B A) 如果 AÍB, BÍC ,那么 AÍC 如果AÍB 同时 BÍA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集

4、, 空集是任何非空集合的真子集。 u 有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B),即A B=x|x A,且x B. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B),即A B =x|x A,或x B). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作 ,即 CSA= 韦 恩 图 示 性 质 A A=A A Φ

5、=Φ A B=B A A B A A B B A A=A A Φ=A A B=B A A B A A B B (CuA) (CuB) = Cu (A B) (CuA) (CuB) = Cu(A B) A (CuA)=U A (CuA)= Φ. 例题: 1.下列四组对象,能构成集合的是 ( ) A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数 2.集合a,b,c 的真子集共有 个 3.若集合M=y|y=x2-2x+1,x R,N=x|x≥0,则M与N的关系是 . 4.设集合A= ,B= ,若A B,则 的取值范围是 5.50名学生做的

6、物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。 6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7.已知集合A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x| x2-mx+m2-19=0, 若B∩C≠Φ,A∩C=Φ,求m的值 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函

7、数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| x∈A 叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中

8、的函数的定义域还要保证实际问题有意义. u 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致 (两点必须同时具备) (见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2

9、) 画法 A、 描点法: B、 图象变换法 常用变换方法有三种 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:AB 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充

10、:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=fg(x)=F(x)(x∈A) 称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f

11、(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x1,x2∈D,且x1<x2; 2 作差f(x1)-f(x2); 3 变形(通常是因式分解和配方); 4 定号(即判断差f(x1)-f(x2)的正负); 5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的

12、单调性 复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 1首先确定

13、函数的定义域,并判断其是否关于原点对称; 2确定f(-x)与f(x)的关系; 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法

14、 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的最大(小)值 2 利用图象求函数的最大(小)值 3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: 2.设函数 的定义域为 ,则函数 的定义域为_ _ 3.若函数 的定义域为 ,则函数 的定义域是 4.函数 ,若 ,则 = 6.已知函数 ,求函数 , 的解析式 7.已知函数 满足 ,则 = 。 8.设 是R上的奇函数,且当 时, ,则当 时 = 在R上的解析式为 9.求下列函数的单调区间: (2) 10.判断函数 的单调性并证明你的结论. 11.设函数 判断它的奇偶性并且求证: .第 8 页 共 8 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁