【浅谈初中数学化归思想】初中数学怎么学好.docx

上传人:可****阿 文档编号:30621453 上传时间:2022-08-06 格式:DOCX 页数:5 大小:18.40KB
返回 下载 相关 举报
【浅谈初中数学化归思想】初中数学怎么学好.docx_第1页
第1页 / 共5页
【浅谈初中数学化归思想】初中数学怎么学好.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《【浅谈初中数学化归思想】初中数学怎么学好.docx》由会员分享,可在线阅读,更多相关《【浅谈初中数学化归思想】初中数学怎么学好.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【浅谈初中数学化归思想】初中数学怎么学好 初中数学思想方法有很多,如:对应思想、分类思想、转化思想、数形结合思想等.但中考中最活跃、最实用的是化归思想.化归就是把一个事物转化为另一个事物或与之接近的、相关的事物,即变“正面强攻”为“侧翼进击”的思维形式.体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的、已解决的或易于解决的问题. 数学化归的一般原则: 目标简单化原则;和谐统一性原则;具体化原则;标准形式化原则(即将待解问题在形式上向该类问题的标准形式转化.标准形式是指已经建立起来的数学模式,如二次函数y=ax2+bx+c,a0);低层次化原则(即解决数学问题时,尽量将高维空间的待

2、解问题化归成低维空间的问题,高次数的问题化归成低次数的问题,多元问题化归为少元问题解决) 化归思想在数学解题中的具体应用: 1.化未知为已知我们通过观察、思考,深刻挖掘量变因素,从而利用已学知识将教材抽象程度转化为能够接受的程度,减弱接触新内容时的陌生感,增强学生接受新内容的喜悦感与信心.最常见的是在学习解二元一次方程组时,可通过加减消元或代入消元的方法将二元一次方程转化为解一元一次方程,该转化称为“消元”;解一元二次方程时,可通过因式分解将一元二次方程转化为解两个一元一次方程,该转化称为“降次”.例如: 例1已知实数x满足x2+x+=0,那么x2+的值是() A.1或-2B.-1或2 C.1

3、D.-2 分析可将难解的分式方程转化为已学的一元二次方程来解决.可设本题条件中的x+=y,将x2+变形为x2+2-2再配方为x+2-2,再将条件化为解关于y的二元一次方程y2-2+y=0,求出y的值即是x+的值.本题选A. 2.化部分为整体往往在选择题或填空题中出现整式或分式求值时可以减少运算量从而达到事半功倍的效果.比如: 例2已知-2x2+x-6=0,则代数式2x2-x+2011的值为. 分析可以把已知条件化为2x2-x+6=0,把代数式2x2-x+2011变出2x2-x+6这个整体,即把2x2-x+2011化为(2x2-x+6)+2005,再把2x2-x+6=0看作整体代入2x2-x+2

4、011中求出结果为2005. 3.化代数为几何数形转化就是在数字与图形之间建立某种关系并相互转化来解决问题.例如: 例3把一个面积为1的正方形等分成两个面积为的矩形,接着把面积为的矩形等分成两个面积为的正方形,再把面积为的正方形等分成两个面积为的矩形,如此进行下去试利用图形揭示的规律计算:+=. 分析观察图形:第一次截得矩形(除右边的矩形)的面积为=1-,第二次截得的两个图形(除右下角正方形)面积为+=1-,第三次截得的三个图形(除右下角矩形)面积为+=1-,故第n次截得前n个矩形(除右下角矩形)面积为+=1-,本题为第8次截得前8个矩形(除右下角矩形)面积和,即当n=8时,1-的值.答案为1

5、-=1-=. 4.数与形的互化体现数形结合的思想常出现在由函数图象求函数解析式;通过看函数图象研究函数的性质;由二次函数图象研究一元二次方程、一元二次不等式之间的关系等.如: 例4(2010辽宁大连)如图,反比例函数y1=和正比例函数y2=k2x的图象都经过点A(-1,2),若y1y2,则x的取值范围是() A.-1x0B.-1x1 C.x-1或0x1D.-1x0或x1 分析要写出函数值y1y2对应自变量的取值范围,可通过将数转化为形来解决(若转化为求解析式再解不等式,则超出初中数学所学范围).若由函数图像性质可知点A与点B关于原点O成中心对称,故交B点的坐标为(1,2),所谓函数值y1y2,

6、即通过观察图象:即指直线在双曲线下方部分所对应自变量x的取值范围.本题选D. 5.实际问题转化为数学问题我们常把中考中出现的有关经济营销、方案选择、方案设计类题型转化为求二次函数极值,解方程组,解一元二次方程.例如: 例5(2010广东汕头)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省? 分析(1)可通过列、解不等式组解决租车方案问题:

7、设租甲车x辆,则租乙车(10x)辆,根据题意,得40x+30(10-x)34016x+20(10-x)170解之得4x7.5,x是整数x4、5、6、7.所有可行的租车方案共有四种:甲车4辆、乙车6辆;甲车5辆、乙车5辆;甲车6辆、乙车4辆;甲车7辆、乙车3辆 (2)可以通过根据一次函数的增减性解决最省问题:设租车的总费用为y元,则y2000x1800(10x),即y200x18000k2000,y随x的增大而增大,x4、5、6、7x4时,y有最小值为18800元,即租用甲车4辆、乙车6辆,费用最省 6.化一般为特殊对某些复杂问题可以从特殊情况入手找突破口,比如: 例6(2010年江苏泰州)已知P=m-1,Q=m2-m(m为任意实数),则P、Q的大小关系为() A.PQB.P=Q C.PQD.不能确定 分析本题可用特值或差值法.特值法:取m=0,分别代入两个代数式求出P=1,Q=0,故PQ.差值法:PQ=m2m1=m2 第 5 页 共 5页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁