《电感耦合等离子体质谱法ppt课件.ppt》由会员分享,可在线阅读,更多相关《电感耦合等离子体质谱法ppt课件.ppt(50页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分电感耦合等离子体电感耦合等离子体-质谱法质谱法 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)同时测定痕量多元素的无机质谱技术同时测定痕量多元素的无机质谱技术变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分Introduction 从分析的对象看,质谱法可以分为原子质谱从分析的对象看,质谱法可以分为原子质谱法和分子
2、质谱法。原子质谱法又称无机质谱法,法和分子质谱法。原子质谱法又称无机质谱法,是将单质离子按照质荷比的不同进行分离和检测是将单质离子按照质荷比的不同进行分离和检测的方法。它广泛应用于物质试样中元素的识别和的方法。它广泛应用于物质试样中元素的识别和浓度测定。浓度测定。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分Part I: ICP-MS的起源和发展的起源和发展w1960s70s,问题的提出,问题的提出 电感耦合等离子体电感耦合等离子体-原子发射光谱技术原子发射光谱技术 (ICP-AES) 火花源无机质谱用
3、于痕量元素分析火花源无机质谱用于痕量元素分析 (SSMS) 优点:痕量多元素同时测定分析速度快样品引入简单缺点:光谱干扰严重优点:谱图简单,分辨率适中,检出限低缺点:样品制备困难,分析速度慢常规离子源效率低ICP-AES + SSMS ICP-MS变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分分析速度: 46个样品/小时m/z记录范围: 6238(LiU)单同位素元素灵敏度: 0.1mg/g精度: 25%全质量范围内的自动扫描操作者对离子源的控制程度尽可能小应用范围:地质研究2. ICP-MS最初的性能设
4、计要求最初的性能设计要求 (1971, 3)Key Point: 连续高压离子源和质谱真空室之间的接口技术连续高压离子源和质谱真空室之间的接口技术变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分3. 元素分析的质谱时代元素分析的质谱时代 1980, Houk & Fassel首次发表ICP-MS联用技术的工作 (两级真空接口技术,Ames Lab., Iowa Univer., USA) 1983, “匹兹堡化学年会”,第一台ICP-MS商品仪面世(Elan 250, Sciex) 1990, “It ha
5、s truly become a technique for MASSES” (Dr. Koppenaal) 2000, 全世界共有35004000台ICP-MS仪器国内:国内:中国科技大学,南京大学,中山大学,南开大学,北京大学,中国地质大学,北京科技大学,浙江大学,厦门大学;中科院高能物理所,广州地化所,长春应化所,生态环境研究所,国家标准物质研究中心,北京有色金属研究总院,国家地质中心,原子能所变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分ICP-MS检测限及质量分析范围检测限及质量分析范围变电站电
6、气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分ICPMS分析性能分析性能 测定对象:测定对象:绝大多数金属元素和部分非金属元素 检测限:检测限:110-5(Pt) 159(Cl) ng/mL 分析速度分析速度: 20 samples per hour 精度:精度:RSD 5% 离子源稳定性:离子源稳定性:优良的长程稳定性 自动化程度:自动化程度:从进样到数据处理的全程自动化和远程控制 应用范围:应用范围:地质、环境、冶金、生物、医药、核工业 可测定同位素的比率变电站电气主接线是指变电站的变压器、输电线路怎样与电力
7、系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分Part II: ICP-MS系统组成及工作原理系统组成及工作原理变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 原子质谱分析包括下面几个步骤:原子质谱分析包括下面几个步骤: 原子化原子化 将原子化的原子大部分转化为离子将原子化的原子大部分转化为离子 离子按照质荷比分离离子按照质荷比分离 计数各种离子的数目计数各种离子的数目变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是
8、电力系统接线组成中一个重要组成部分Basic Instrumental Components of ICP-MSMass Separation DeviceICP TorchRF PowerSupplyNebulizerSprayChamberMechanicalPumpTurbo MolecularPumpTurbo MolecularPumpIon OpticsIon DetectorMSInterface进样系统进样系统等离子体源等离子体源接口接口质谱仪质谱仪进样系统进样系统等离子体源等离子体源接口接口质谱仪质谱仪变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成
9、输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分A Typical ICP-MS in 1990s(PE, PlasmaQuad II)进样系统进样系统等离子体源等离子体源接口接口质谱仪质谱仪变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分ICP-MS Lab. in Phys. Sci. Center, USTC(Thermo VG Elemental, PlasmaQuad III)变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系
10、统接线组成中一个重要组成部分A Typical ICP-MS Laboratory in 2000s (PE, Sciex ELAN 6000)变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分1. 电感耦合等离子体电感耦合等离子体 等离子体的一般概念等离子体的一般概念 等离子体指的是含有一定浓度阴阳离子能够导等离子体指的是含有一定浓度阴阳离子能够导电的气体混合物。在等离子体中,阴阳离子的电的气体混合物。在等离子体中,阴阳离子的浓度是相同的,净电荷为零。浓度是相同的,净电荷为零。 通常用氩形成等离子体。氩离子
11、和电子是主要通常用氩形成等离子体。氩离子和电子是主要导电物质。一般温度可以达到导电物质。一般温度可以达到10,000K。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分物理构件w 石英炬管 (Fassel型)w 耦合负载线圈(23圈水冷细铜管)w 射频发生器(提供能量)w Tesla线圈(点火装置)变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分冷却气:等离子体支持气体,保护管壁冷却气:等离子体支持气体,保护管壁辅助气:
12、保护毛细管尖辅助气:保护毛细管尖雾化气:进样并穿透等离子体中心雾化气:进样并穿透等离子体中心(常用Ar, N2, He等惰性气体) 石英炬管及载气石英炬管及载气由三个同心石英管组成,三股氩气流由三个同心石英管组成,三股氩气流分别进入炬管。分别进入炬管。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 ICP焰炬的形成焰炬的形成形成稳定的形成稳定的ICPICP焰炬,应有焰炬,应有三个条件:高频电磁场、工三个条件:高频电磁场、工作气体以及能维持气体稳定作气体以及能维持气体稳定放电的石英炬管。放电的石英炬管。在管
13、子的上部环绕着一水冷在管子的上部环绕着一水冷感应线圈,当高频发生器供感应线圈,当高频发生器供电时,线圈轴线方向上产生电时,线圈轴线方向上产生强烈振荡的磁场。用高频火强烈振荡的磁场。用高频火花等方法使中间流动的工作花等方法使中间流动的工作气体电离,产生的离子和电气体电离,产生的离子和电子再与感应线圈所产生的起子再与感应线圈所产生的起伏磁场作用,这一相互作用伏磁场作用,这一相互作用使线圈内的离子和电子沿图使线圈内的离子和电子沿图市所示的封闭环路流动;它市所示的封闭环路流动;它们对这一运动的阻力则导致们对这一运动的阻力则导致欧姆加热作用。由于强大的欧姆加热作用。由于强大的电流产生的高温,使气体加电流
14、产生的高温,使气体加热,从而形成火炬状的等离热,从而形成火炬状的等离子体。子体。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 等离子体工作原理等离子体工作原理(b) 加电磁场加电磁场(a) 通气通气点火点火(c)(d) 碰撞电离碰撞电离(e) 形成形成ICP变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分样品溶液在样品溶液在ICP中的历程中的历程气溶胶气溶胶 M(H2O)+X-固体固体 (MX)n气体气体 MX原子原
15、子 M离子离子 M+Inductionzone变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分2. ICP与与MS的接口的接口(Interface) 离子的提取采样锥采样锥(sampling cone)截取锥截取锥(skimmer cone) 离子的聚焦离子透镜组离子透镜组 真空系统一个机械泵一个机械泵一个分子涡轮泵一个分子涡轮泵变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分离子的提取离子的提取变电站电气主接线是指变电
16、站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分离子透镜组的聚焦作用离子透镜组的聚焦作用R. Thomas, Spectroscopy 16 (2001) 3844截取锥后正离子之间的排斥作用截取锥后正离子之间的排斥作用离子透镜组的作用机制离子透镜组的作用机制变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 四极杆质谱四极杆质谱 (Quadrupole Mass)3. 质谱仪质谱仪射频和直流电场同时作用下的振动滤质器射频和直流电场同时作用下的振
17、动滤质器变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 双聚焦扇形磁场质谱双聚焦扇形磁场质谱 ( Double-focused Magnetic-Sector Mass Spectrometer )N. Jakubowskia et. al., Spectrochimica Acta 53B (1998) 17391763方向聚焦和动能聚焦扇形磁场偏转分离静电分析器消除相 同质量离子间的动能差别具有更高的分辨率变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主
18、接线是电力系统接线组成中一个重要组成部分 飞行时间质谱飞行时间质谱 (Time-of-flight MS)M. Balcerazak, Analytical Sciences 19(2003) 979-989各离子动能相同,飞行速度不同分析速度远大于四极杆质谱变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分固体固体激光烧蚀激光烧蚀4. ICP-MS样品引入系统(进样方式)样品引入系统(进样方式)氢化物氢化物变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是
19、电力系统接线组成中一个重要组成部分w雾化器高速气流在毛细管尖形成负压,带动样品溶液从管尖喷出雾化为小液滴w雾室液滴与雾室内壁碰撞,较大的液滴聚集为废液流出;较小的液滴分散为气溶胶进入ICPMeinhard同心玻璃同心玻璃雾化器雾化器样品传输效率低样品传输效率低毛细管口易堵塞毛细管口易堵塞(60%)可预先除去溶剂可预先除去基体F. Vanhaecke et. al. Anal Bioanal Chem. 17(2002), 933-943变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 激光烧蚀法激光烧蚀法原
20、位原位(in situ)探测技术探测技术仪器原理优点:优点:原位无损分析重现性好,线性范围宽适用样品类型多(钢铁、陶瓷、矿物、核材料、食品)缺点:缺点:检测限较差基体干扰严重定量校准方法不理想 D. GuntherU et. Al., Spectrochimica Acta Part B 54 1999 381-409变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分5. 质谱图及其干扰质谱图及其干扰 ICP-MS的图谱非常简单,容易解析和解释。的图谱非常简单,容易解析和解释。但是也不可避免的存在相应的干扰问
21、题,主但是也不可避免的存在相应的干扰问题,主要包括要包括光谱干扰光谱干扰和和基体效应基体效应两类。两类。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分光谱干扰:光谱干扰: 当等离子体中离子种类与分析物离子具有相同当等离子体中离子种类与分析物离子具有相同的质荷比,即产生光谱干扰。的质荷比,即产生光谱干扰。 光谱干扰有四种光谱干扰有四种 同质量类型离子同质量类型离子 多原子或加和离子多原子或加和离子 氧化物和氢氧化物离子氧化物和氢氧化物离子 仪器和试样制备所引起的干扰仪器和试样制备所引起的干扰变电站电气主接线
22、是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 同质量类型离子干扰同质量类型离子干扰 同质量类型离子干扰是指两种不同元素有几乎相同质量类型离子干扰是指两种不同元素有几乎相同质量的同位素。对使用四极质谱计的原子质谱仪来同质量的同位素。对使用四极质谱计的原子质谱仪来说,同质量类指的是质量相差小于一个原于质量单位说,同质量类指的是质量相差小于一个原于质量单位的同位素。使用高分辨率仪器时质量差可以更小些。的同位素。使用高分辨率仪器时质量差可以更小些。周期表中多数元素都有同质量类型重叠的一个、二个周期表中多数元素都有同质量类型重叠
23、的一个、二个甚至三个同位素。甚至三个同位素。 如:铟有如:铟有113In+和和115In+两个稳定的同位素两个稳定的同位素 前者与前者与113Cd+重叠,后者与重叠,后者与115Sn+重叠。重叠。 因为同质量重叠可以从丰度表上精确预计此干扰因为同质量重叠可以从丰度表上精确预计此干扰的校正可以用适当的计算机软件进行。现在许多仪器的校正可以用适当的计算机软件进行。现在许多仪器已能自动进行这种校正。已能自动进行这种校正。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 多原子离子十扰多原子离子十扰 多原子离子多原
24、子离子(或分子离子或分子离子)是是ICPMS中干扰的主要来源。中干扰的主要来源。一般认为,多原子离子并不存在于等离子体本身中,一般认为,多原子离子并不存在于等离子体本身中,而是在离子的引出过程中。由等离子体中的组分与基而是在离子的引出过程中。由等离子体中的组分与基体或大气中的组分相互作用而形成。体或大气中的组分相互作用而形成。 氢和氧占等离子体中原子和离子总数的氢和氧占等离子体中原子和离子总数的30左右,余左右,余下的大部分是由下的大部分是由ICP炬的炬的氩氩气产生的。气产生的。ICPMS的背景的背景峰主要是由这些多原子离子结出的它们有两组:以峰主要是由这些多原子离子结出的它们有两组:以氧为基
25、础质量较轻的氧为基础质量较轻的组和以组和以氩氩为基础较重的一组,为基础较重的一组,两组都包括含氢的分子离子。两组都包括含氢的分子离子。 例:例:16O2+干扰干扰32S+变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 氧化物和氢氧化物离子干扰氧化物和氢氧化物离子干扰 在在ICPMS中,另中,另个重要的干扰因素是由分析物、个重要的干扰因素是由分析物、基体组分、溶剂和等离子气体等形成的氧化物和氢氧基体组分、溶剂和等离子气体等形成的氧化物和氢氧化物,其中分析物和基体组分的这种干扰更为明显些。化物,其中分析物和基
26、体组分的这种干扰更为明显些。它们几乎都会在某种程度上形成它们几乎都会在某种程度上形成MO+和和MOH+离子,离子,M表示分析物或基体组分元素,进而有可能产生与某些表示分析物或基体组分元素,进而有可能产生与某些分析物离子峰相重叠的峰。分析物离子峰相重叠的峰。 例如钛的例如钛的5种天然同位素的氧化物种天然同位素的氧化物 质量数分别为质量数分别为62、63、64、65和和66, 干扰分析干扰分析 62Ni + 、63Cu+、64Zn+、65Cu+和和66Zn+ 氧化物的形成与许多实验条件有关,例如进样流速、氧化物的形成与许多实验条件有关,例如进样流速、射频能量、取样锥一分离锥间距、取样孔大小、等离射
27、频能量、取样锥一分离锥间距、取样孔大小、等离子气体成分、氧和溶剂的去除效率等。调节这些条件子气体成分、氧和溶剂的去除效率等。调节这些条件可以解决些特定的氧化物和氢氧化物重叠问题。可以解决些特定的氧化物和氢氧化物重叠问题。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 仪器和试样制备所引起的干扰仪器和试样制备所引起的干扰 等离子体气体通过采样锥和分离锥时,活泼性等离子体气体通过采样锥和分离锥时,活泼性氧离子会从锥体镍板上溅射出镍离子。采取措氧离子会从锥体镍板上溅射出镍离子。采取措施使等离子体的电位下降到低于
28、镍的溅射闭值,施使等离子体的电位下降到低于镍的溅射闭值,可使此种效应减弱甚至消失。可使此种效应减弱甚至消失。 痕量浓度水平上常出现与分析物无关的离子峰,痕量浓度水平上常出现与分析物无关的离子峰,例如在几个例如在几个ngmL-1的水平出现的铜和锌通常的水平出现的铜和锌通常是存在于溶剂酸和去离子水中的杂质。因此,是存在于溶剂酸和去离子水中的杂质。因此,进行超纯分析时,必须使用超纯水和溶剂。最进行超纯分析时,必须使用超纯水和溶剂。最好用硝酸溶解固体试样,因为氮的电离电位高,好用硝酸溶解固体试样,因为氮的电离电位高,其分子离子相当弱,很少有干扰。其分子离子相当弱,很少有干扰。变电站电气主接线是指变电站
29、的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分基体效应:基体效应: ICPMS中所分析的试样,中所分析的试样,般为固体含量其质量分数般为固体含量其质量分数小于小于1,或质量浓度约为,或质量浓度约为1000ug.mL-1的溶液试样。的溶液试样。当溶液中共存物质量浓度高于当溶液中共存物质量浓度高于5001000ug.mL-1 时,时,ICPMS分析的基体效应才会显现出来。共存物中含有分析的基体效应才会显现出来。共存物中含有低电离能元素例如碱金属、碱土金属和镧系元素且超低电离能元素例如碱金属、碱土金属和镧系元素且超过限度。由它们提供的等
30、离子体的电子数目很多,进过限度。由它们提供的等离子体的电子数目很多,进而抑制包括分析物元素在内的其它元素的电离,影响而抑制包括分析物元素在内的其它元素的电离,影响分析结果。试样固体含量高会影响雾化和蒸发溶液以分析结果。试样固体含量高会影响雾化和蒸发溶液以及产生和输送等离子体的过程。试样溶液提升量过大及产生和输送等离子体的过程。试样溶液提升量过大或蒸发过快,等离子体炬的温度就会降低,影响分析或蒸发过快,等离子体炬的温度就会降低,影响分析物的电离,使被分析物的响应下降、基体效应的影响物的电离,使被分析物的响应下降、基体效应的影响可以采用稀释、基体匹配、标准加入或者同位素稀释可以采用稀释、基体匹配、
31、标准加入或者同位素稀释法降低至最小。法降低至最小。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 光谱干扰和基体效应一般来讲可以通过相应的手光谱干扰和基体效应一般来讲可以通过相应的手段加以抑制和降低,但难以完全消除。因而在实段加以抑制和降低,但难以完全消除。因而在实际工作中要有针对性的采取各种方法提高分析准际工作中要有针对性的采取各种方法提高分析准确性。确性。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分Part I
32、II: ICP-MS分析应用分析应用 ICPMS可以用于物质试样中一个或多个元素的可以用于物质试样中一个或多个元素的定性、半定量和定量分析:定性、半定量和定量分析:ICPMS可以测定的可以测定的质量范围为质量范围为3300原子单位,分辨能力小于原子单位,分辨能力小于1原子单位,能测定周期表中原子单位,能测定周期表中90的元素,大多的元素,大多数检测限在数检测限在0.110 ug.mL-1范围且有效测量范范围且有效测量范围达围达6个数量级个数量级, 标淮偏差为标淮偏差为2一一4。每元素。每元素测定时间测定时间10秒非常适合多元素的同时测定分秒非常适合多元素的同时测定分析。析。变电站电气主接线是指
33、变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 定性和半定量分析定性和半定量分析 定量分析定量分析 工作曲线法工作曲线法 内标法内标法 同位素稀释法同位素稀释法 形态分析法形态分析法 同位素比测量同位素比测量变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分1. 同位素稀释法同位素稀释法 原理:原理:在样品中掺入已知量的某一被测元素的浓缩同位素后,测定该浓缩同位素与该元素的另一参考同位素的信号强度的比值变化。w 定量依据:定量依据: w C
34、X = MSK(AS-BSR)/W(BR-A)w CX: 样品中被测元素的浓度; w MS: 掺入物的质量; W: 样品质量; w K: 被测元素原子量与浓缩物原子量的比值; w A: 参考同位素的天然丰度; B: 浓缩同位素的天然丰度; w AS: 参考同位素在浓缩物中的丰度; BS: 浓缩同位素在浓缩物中的丰度; w R: 加入浓缩物后样品中参考同位素和浓缩同位素的比值变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 实验步骤实验步骤1. 测定未加浓缩同位素稀释剂的样品 估计被测成分的浓度,计算需要加入
35、的浓缩同位素的量MS;2. 在样品中加入浓缩同位素稀释剂,其中AS和BS值已知,计算K值 3. 测定“改变了的”同位素比值R 4. 计算样品中被测元素的浓度CX。w 优点:优点:迄今为止最准确的元素分析方法之一不受化学和物理因素的干扰;不受样品基体干扰和分析方法的系统误差干扰可用于元素的形态分析w 缺点:缺点:不能用于单同位素分析测定前需要进行预分析同位素稀释剂价格昂贵 CX = MSK(AS-BSR)/W(BR-A)http:/www.measurementuncertainty.org/mu/guide example 7变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从
36、而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分2. ICP-MS的形态分析法的形态分析法 形态分析的意义和内容形态分析的意义和内容元素价态分析 (eg. As(III)/As(V)元素存在形态的分析 (eg. 有机Se和无机Se) 形态分析的手段形态分析的手段与色谱分离技术联用与色谱分离技术联用HPLC-ICP-MSI(E)C-ICP-MSSPE-ICP-MSGC-ICP-MSCE-ICP-MSJ.A. Carrusos group Journal of Chromatography A, 856 (1999) 243258 Journal of Chromatograp
37、hy A, 974 (2002) 121变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 HPLC-ICP-MS法法仪器结构原理仪器结构原理ELAN公司产公司产HPLC-ICP-MS变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分AsBAsIIIDMAAsCMMAAs(V)六种六种As化合物在化合物在HPLC-ICP-MS分析方法中的出峰情况分析方法中的出峰情况Milstein L.S. et. al., J. Agri
38、c. Food Chem. 2003, 51, 4180-4184变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分六种六种Se化合物在化合物在HPLC-ICP-MS分析方法中的出峰情况分析方法中的出峰情况Cao T.H. et. al., Anal. Chem. 2001, 73,2898-2902变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分进样系统:进样系统:气体;液体;固体 与其他分离预富集方法联用离子源:离子源
39、:电感耦合等离子体接口:接口:离子的提取及聚焦检测器:检测器:质谱(四极杆、扇形磁场、飞秒时间质谱仪)分析对象:分析对象:元素及其同位素信息种类及特点:信息种类及特点:多元素同时定性和定量总结:总结:ICP-MS方法的性能及特点方法的性能及特点变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分Seminar 讨论题目讨论题目 ICP-MS的分析应用的分析应用变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分思考:思考:由由ICP-MS的分析原理推测可能的干扰来的分析原理推测可能的干扰来源有那些?源有那些?试提出消除干扰的方法。试提出消除干扰的方法。