《防抱死制动系统毕业论文外文翻译.doc》由会员分享,可在线阅读,更多相关《防抱死制动系统毕业论文外文翻译.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、附录一 英文原文Anti-lock braking systemFrom Wikipedia, the free encyclopediaAn anti-lock braking system (ABS) is a safety system that allows the wheels on a motor vehicle to continue interacting tractively with the road surface as directed by driver steering inputs while braking, preventing the wheels from
2、 locking up (that is, ceasing rotation) and therefore avoiding skidding.An ABS generally offers improved vehicle control and decreases stopping distances on dry and slippery surfaces for many drivers; however, on loose surfaces like gravel or snow-covered pavement, an ABS can significantly increase
3、braking distance, although still improving vehicle control.Since initial widespread use in production cars, anti-lock braking systems have evolved considerably. Recent versions not only prevent wheel lock under braking, but also electronically control the front-to-rear brake bias. This function, dep
4、ending on its specific capabilities and implementation, is known as electronic brakeforce distribution (EBD), traction control system, emergency brake assist, or electronic stability control (ESC).HistoryEarly systemsThe ABS was first developed for aircraft use in 1929 by the French automobile and a
5、ircraft pioneer, Gabriel Voisin, as threshold braking on airplanes is nearly impossible. An early system was Dunlops Maxaret system, which was introduced in the 1950s and is still in use on some aircraft models.These systems use a flywheel and valve attached to a hydraulic line that feeds the brake
6、cylinders. The flywheel is attached to a drum that runs at the same speed as the wheel. In normal braking, the drum and flywheel should spin at the same speed. However, if a wheel were to slow down, then the drum would do the same, leaving the flywheel spinning at a faster rate. This causes the valv
7、e to open, allowing a small amount of brake fluid to bypass the master cylinder into a local reservoir, lowering the pressure on the cylinder and releasing the brakes. The use of the drum and flywheel meant the valve only opened when the wheel was turning. In testing, a 30% improvement in braking pe
8、rformance was noted, because the pilots immediately applied full brakes instead of slowly increasing pressure in order to find the skid point. An additional benefit was the elimination of burned or burst tires.In 1958, a Royal Enfield Super Meteor motorcycle was used by the Road Research Laboratory
9、to test the Maxaret anti-lock brake. The experiments demonstrated that anti-lock brakes can be of great value to motorcycles, for which skidding is involved in a high proportion of accidents. Stopping distances were reduced in most of the tests compared with locked wheel braking, particularly on sli
10、ppery surfaces, in which the improvement could be as much as 30 percent. Enfields technical director at the time, Tony Wilson-Jones, saw little future in the system, however, and it was not put into production by the company.A fully mechanical system saw limited automobile use in the 1960s in the Fe
11、rguson P99 racing car, the Jensen FF, and the experimental all wheel drive Ford Zodiac, but saw no further use; the system proved expensive and unreliable in automobile use.Modern systemsChrysler, together with the Bendix Corporation, introduced a computerized, three-channel, four-sensor all-wheel A
12、BS called Sure Brake for its 1971 Imperial.It was available for several years thereafter, functioned as intended, and proved reliable. In 1971, General Motors introduced the Trackmaster rear-wheel only ABS as an option on their Rear-wheel drive Cadillac models. In the same year, Nissan offered an EA
13、L (Electro Anti-lock System) as an option on the Nissan President, which became Japans first electronic ABS.In 1988, BMW introduced the first motorcycle with an electronic-hydraulic ABS: the BMW K100. Honda followed suit in 1992 with the launch of its first motorcycle ABS on the ST1100 Pan European.
14、 In 2007, Suzuki launched its GSF1200SA (Bandit) with an ABS. In 2005, Harley-Davidson began offering ABS as an option for police bikes. In 2008, ABS became a factory-installed option on all Harley-Davidson Touring motorcycles and standard equipment on select models. OperationThe anti-lock brake con
15、troller is also known as the CAB (Controller Anti-lock Brake).A typical ABS includes a central electronic control unit (ECU), four wheel speed sensors, and at least two hydraulic valves within the brake hydraulics. The ECU constantly monitors the rotational speed of each wheel; if it detects a wheel
16、 rotating significantly slower than the others, a condition indicative of impending wheel lock, it actuates the valves to reduce hydraulic pressure to the brake at the affected wheel, thus reducing the braking force on that wheel; the wheel then turns faster. Conversely, if the ECU detects a wheel t
17、urning significantly faster than the others, brake hydraulic pressure to the wheel is increased so the braking force is reapplied, slowing down the wheel. This process is repeated continuously and can be detected by the driver via brake pedal pulsation. Some anti-lock system can apply or release bra
18、king pressure 16 times per second. The ECU is programmed to disregard differences in wheel rotative speed below a critical threshold, because when the car is turning, the two wheels towards the center of the curve turn slower than the outer two. For this same reason, a differential is used in virtua
19、lly all roadgoing vehicles.If a fault develops in any part of the ABS, a warning light will usually be illuminated on the vehicle instrument panel, and the ABS will be disabled until the fault is rectified.The modern ABS applies individual brake pressure to all four wheels through a control system o
20、f hub-mounted sensors and a dedicated micro-controller. ABS is offered or comes standard on most road vehicles produced today and is the foundation for ESC systems, which are rapidly increasing in popularity due to the vast reduction in price of vehicle electronics over the years. Modern electronic
21、stability control (ESC or ESP) systems are an evolution of the ABS concept. Here, a minimum of two additional sensors are added to help the system work: these are a steering wheel angle sensor, and a gyroscopic sensor. The theory of operation is simple: when the gyroscopic sensor detects that the di
22、rection taken by the car does not coincide with what the steering wheel sensor reports, the ESC software will brake the necessary individual wheel(s) (up to three with the most sophisticated systems), so that the vehicle goes the way the driver intends. The steering wheel sensor also helps in the op
23、eration of Cornering Brake Control (CBC), since this will tell the ABS that wheels on the inside of the curve should brake more than wheels on the outside, and by how much.The ABS equipment may also be used to implement a traction control system(TCS) on acceleration of the vehicle. If, when accelera
24、ting, the tire loses traction, the ABS controller can detect the situation and take suitable action so that traction is regained. More sophisticated versions of this can also control throttle levels and brakes simultaneously.ComponentsThere are four main components to an ABS: speed sensors, valves,
25、a pump, and a controller. Speed sensorsThe anti-lock braking system needs some way of knowing when a wheel is about to lock up. The speed sensors, which are located at each wheel, or in some cases in the differential, provide this information.ValvesThere is a valve in the brake line of each brake co
26、ntrolled by the ABS. On some systems, the valve has three positions:In position one, the valve is open; pressure from the master cylinder is passed right through to the brake.In position two, the valve blocks the line, isolating that brake from the master cylinder. This prevents the pressure from ri
27、sing further should the driver push the brake pedal harder.In position three, the valve releases some of the pressure from the brake.PumpSince the valve is able to release pressure from the brakes, there has to be some way to put that pressure back. That is what the pump does; when a valve reduces t
28、he pressure in a line, the pump is there to get the pressure back up.ControllerThe controller is an ECU type unit in the car which receives information from each individual wheel speed sensor, in turn if a wheel loses traction the signal is sent to the controller, the controller will then limit the
29、brakeforce (EBD) and activate the ABS modulator which actuates the braking valves on and off.UseThere are many different variations and control algorithms for use in an ABS. One of the simpler systems works as follows:The controller monitors the speed sensors at all times. It is looking for decelera
30、tions in the wheel that are out of the ordinary. Right before a wheel locks up, it will experience a rapid deceleration. If left unchecked, the wheel would stop much more quickly than any car could. It might take a car five seconds to stop from 60mph (96.6 km/h) under ideal conditions, but a wheel t
31、hat locks up could stop spinning in less than a second.The ABS controller knows that such a rapid deceleration is impossible, so it reduces the pressure to that brake until it sees an acceleration, then it increases the pressure until it sees the deceleration again. It can do this very quickly, befo
32、re the tire can actually significantly change speed. The result is that the tire slows down at the same rate as the car, with the brakes keeping the tires very near the point at which they will start to lock up. This gives the system maximum braking power.When the ABS system is in operation the driv
33、er will feel a pulsing in the brake pedal; this comes from the rapid opening and closing of the valves. This pulsing also tells the driver that the ABS has been triggered. Some ABS systems can cycle up to 16 times per second.Brake typesAnti-lock braking systems use different schemes depending on the
34、 type of brakes in use. They can be differentiated by the number of channels: that is, how many valves that are individually controlledand the number of speed sensors. Four-channel, four-sensor ABSThis is the best scheme. There is a speed sensor on all four wheels and a separate valve for all four w
35、heels. With this setup, the controller monitors each wheel individually to make sure it is achieving maximum braking force.Three-channel, three-sensor ABSThis scheme, commonly found on pickup trucks with four-wheel ABS, has a speed sensor and a valve for each of the front wheels, with one valve and
36、one sensor for both rear wheels. The speed sensor for the rear wheels is located in the rear axle. This system provides individual control of the front wheels, so they can both achieve maximum braking force. The rear wheels, however, are monitored together; they both have to start to lock up before
37、the ABS will activate on the rear. With this system, it is possible that one of the rear wheels will lock during a stop, reducing brake effectiveness.One-channel, one-sensor ABSThis system is commonly found on pickup trucks with rear-wheel ABS. It has one valve, which controls both rear wheels, and
38、one speed sensor, located in the rear axle. This system operates the same as the rear end of a three-channel system. The rear wheels are monitored together and they both have to start to lock up before the ABS kicks in. In this system it is also possible that one of the rear wheels will lock, reduci
39、ng brake effectiveness. This system is easy to identify. Usually there will be one brake line going through a T-fitting to both rear wheels.EffectivenessA 2003 Australian study by Monash University Accident Research Centre found that ABS: Reduced the risk of multiple vehicle crashes by 18 percent,Re
40、duced the risk of run-off-road crashes by 35 percent.On high-traction surfaces such as bitumen, or concrete, many (though not all) ABS-equipped cars are able to attain braking distances better (i.e. shorter) than those that would be easily possible without the benefit of ABS. In real world condition
41、s even an alert, skilled driver without ABS would find it difficult, even through the use of techniques like threshold braking, to match or improve on the performance of a typical driver with a modern ABS-equipped vehicle. ABS reduces chances of crashing, and/or the severity of impact. The recommend
42、ed technique for non-expert drivers in an ABS-equipped car, in a typical full-braking emergency, is to press the brake pedal as firmly as possible and, where appropriate, to steer around obstructions. In such situations, ABS will significantly reduce the chances of a skid and subsequent loss of cont
43、rol.In gravel, sand and deep snow, ABS tends to increase braking distances. On these surfaces, locked wheels dig in and stop the vehicle more quickly. ABS prevents this from occurring. Some ABS calibrations reduce this problem by slowing the cycling time, thus letting the wheels repeatedly briefly l
44、ock and unlock. Some vehicle manufacturers provide an off-road button to turn ABS function off. The primary benefit of ABS on such surfaces is to increase the ability of the driver to maintain control of the car rather than go into a skid, though loss of control remains more likely on soft surfaces
45、like gravel or slippery surfaces like snow or ice. On a very slippery surface such as sheet ice or gravel, it is possible to lock multiple wheels at once, and this can defeat ABS (which relies on comparing all four wheels, and detecting individual wheels skidding). Availability of ABS relieves most
46、drivers from learning threshold braking.A June 1999 National Highway Traffic Safety Administration (NHTSA) study found that ABS increased stopping distances on loose gravel by an average of 22 percent.According to the NHTSA,ABS works with your regular braking system by automatically pumping them. In
47、 vehicles not equipped with ABS, the driver has to manually pump the brakes to prevent wheel lockup. In vehicles equipped with ABS, your foot should remain firmly planted on the brake pedal, while ABS pumps the brakes for you so you can concentrate on steering to safety.When activated, some earlier
48、ABS systems caused the brake pedal to pulse noticeably. As most drivers rarely or never brake hard enough to cause brake lock-up, and a significant number rarely bother to read the cars manual, this may not be discovered until an emergency. When drivers do encounter an emergency that causes them to
49、brake hard, and thus encounter this pulsing for the first time, many are believed to reduce pedal pressure, and thus lengthen braking distances, contributing to a higher level of accidents than the superior emergency stopping capabilities of ABS would otherwise promise. Some manufacturers have therefore implemented a brake assist system that determines that the driver is attempting a panic stop (by detecting that the brake pedal was depressed very fast, unlike a no