《高考物理专题分析及复习建议-轻绳、轻杆、弹簧模型专题复习.doc》由会员分享,可在线阅读,更多相关《高考物理专题分析及复习建议-轻绳、轻杆、弹簧模型专题复习.doc(82页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考物理专题分析及复习建议-轻绳、轻杆、弹簧模型专题复习平面模型的构建高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习 一轻绳模型1.轻绳模型的特点:“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大
2、,以至于认为在受力时形变极微小,看作不可伸长。2.轻绳模型的规律:轻绳各处受力相等,且拉力方向沿着绳子;轻绳不能伸长;用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;轻绳的弹力会发生突变。3.绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。4.力对绳子做的功,全部转化为绳对物体的做的功。5.绳连动问题:当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为 时, 例1:如图所示,将
3、一根不能伸长、柔软的轻绳两端分别系于A、B两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为,绳子张力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为,绳子张力为F3,不计摩擦,则( )A= B=F2 F3 DF1 =F2 F31-1如图所示,轻绳上端固定在天花板上的O点,下端悬挂一个重为10 N的物体A,B是固定的表面光滑的小圆柱体.当A静止时,轻绳与天花板的夹角为30,B受到绳的压力是 ( )A.5 N B.10 NC.5 N D.10 N1-2.相距4m的两根柱子上拴着一根长
4、为5m的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计摩擦,当系统平衡时,AO绳和BO绳受到的拉力T为多少?如果将细绳一端的悬点B向上移动些,二绳张力大小的变化情况是什么?(150N)(细绳绕过滑轮,相当于“活结”,也就是一根绳子,一根绳子的拉力处处相等。)例2:如图所示,三根长度均为l的轻绳分别连接于C、D两点,A、B两端被悬挂在水平天花板上,相距2l.现在C点上悬挂一个质量为m的重物,为使CD绳保持水平,在D点上可施加力的最小值为 ( ) A. mg B. mg C. mg D. mg变式训练1段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所
5、示,其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的绳( )A必定是OA B.必定是OBC必定是OC D.可能是OB,也可能是OC变式训练2如图所示,物体的质量为两根轻细绳和的一端连接于竖直墙上,另一端系于物体上,当、均伸直时,、的夹角,在物体上另施加一个方向也与水平线成的拉力,若要使绳都能伸直,求拉力的大小范围变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时A绳OA的拉力逐渐增大 B绳OA的拉力逐渐减小C绳OA的拉力先增大后减小 D绳OA的拉力先减小后增大变式训练4.一轻绳跨过两个等高的定滑轮不计大小和
6、摩擦,两端分别挂上质量为m1 = 4Kg和m2 = 2Kg的物体,如图所示。在滑轮之间的一段绳上悬挂物体m,为使三个物体不可能保持平衡,求m的取值范围。(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。)例3:如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G1,圆顶形降落伞伞面的重力为G2,有8条相同的拉线,一端与飞行员相邻(拉线重力不计),另一端均匀分布在伞面边缘上,每根拉线和竖直方向都成300角.那么每根拉线上的张力大小为( )A. B.123C. D.变式训练:三根不可伸长的相同的轻绳,一端系在半径为r0的环1上,彼此间
7、距相等,绳穿过半径为r0的第2个圆环,另一端同样地系在半径为2r0的环3上,如图所示,环1固定在水平面上,整个系统处于平衡状态.试求第2个环中心与第3个环中心之间的距离.(三个环都是用相同的金属丝制作的,摩擦不计)(立体图形和“活结”,立体图形和“死结”,你能分清吗?揭开神秘的面纱吧!)例4:如左图,若已知物体A的速度大小为vA,求重物B的速度大小?变式训练.如图所示,当小车A以恒定的速度v向左运动时,则对于B物体来说,下列说法正确的是( )A加速上升 B匀速上升CB物体受到的拉力大于B物体受到的重力DB物体受到的拉力等于B物体受到的重力(绳连动问题:需要搞清楚物体的速度和绳的速度之间的关系哟
8、!)例5:如图所示,在与水平方向夹角为的恒力F的作用下,物体通过的位移为S,则力F做的功为多少?变式训练:一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图828所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H提升时,车加速向左运动,沿水平方向从A经过B驶向C设A到B的距离也为H,车经过B点时的速度为vB求车由A移到B的过程中,绳Q端的拉力对物体做的功?(通过绳对物体做功:力对绳做了多少功,全部转化为对绳物体做的功。)二轻杆模型1.轻杆模型的特点:轻杆的
9、质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。2.轻杆模型的规律:轻杆各处受力相等,其力的方向不一定沿着杆的方向;轻杆不能伸长或压缩;轻杆受到的弹力的方式有拉力或压力。杆对物体的力一般只能被动分析,而不能主动出击(即根据运动状态进行受力分析)3.有转轴的杆给物体的力一般沿着杆的方向并且通过转轴。4.杆连动的处理思路与方法和处理绳连动的相同例1:如图所示,一根弹性杆的一端固定一个重力是2 N的小球,小球处于静止状态时,弹性杆对小球的弹力( ) A.大小为2 N,方向平行于斜面向上 B.大小为1 N,方向平行于斜面向上 C.大小为2
10、 N,方向垂直于斜面向上 D.大小为2 N,方向竖直向上 变式训练:如图所示,小车上固定一弯折硬杆ABC,杆C端固定一质量为m的小球,已知ABC,当小车以加速度a向左做匀加速直线运动时,杆C端对小球的作用力大小为多少。(固定杆,也叫做没有转轴的轻杆,它给结点的力的方向怎么来确定呢?)例2:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的点,整个系统处于平衡状态。现把拴于墙上点的绳端向上移动,并保证系统始终处于平衡状态,则轻杆的作用力如何变化?变式训练.的一端A固定在墙上,另一端通过固定在直杆BE的定滑轮C吊一重物,如图,杆BE可以
11、绕B点转动。杆、滑轮,绳的质量及摩擦均不计,设AC段绳的拉力为,BE杆受的压力为,把绳端A点墙稍向下移一微小距离,整个装置再一次平衡后有A 、均增大 B 先减小后增大、增大C 不变、增大 D 、均不变(具有转轴的杆,当它缓慢转动时,感受力的特点是什么?应该怎么处理呢?)530BAVBVA例3:如图所示,轻杆的两端分别连着A、B两球,B球处于水平地面,A球靠在竖直墙壁上,由于地面打滑,B球沿水平地面向左滑动,A球靠着墙面向下滑。某时,B球滑到图示的位置,速度VB =10m /s,则此时VA = m /s (sin370=0.6 cos37o=0.8 )变式训练.如图所示,一轻杆两端分别固定质量为
12、mA和mB的两个小球A和B(可视为质点)。将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成角时,A球沿槽下滑的速度为VA,求此时B球的速度VB?(杆连动问题:和绳连动问题有相似的地方吗?如果有,那就“移花接木”吧)例4:如图所示,一根轻质细杆的两端分别固定着A、B两只质量均为m的小球,O点是一光滑水平轴,已知AO=a,BO=2a,使细杆从水平位置由静止开始转动,当B球转到O点正下方时,它对细杆的拉力大小是多大?变式训练如图14所示,A、B两小球用轻杆连接,A球只能沿内壁光滑的竖直滑槽运动,B球处于光滑水平面内开始时杆竖直,A、B两球静止由于微小的扰动,B开始沿水平面向右运动已知A球的质量为mA
13、,B球的质量为mB,杆长为L则:(1)A球着地时的速度为多大?(2)A球机械能最小时,水平面对B球的支持力为多大?(3)若mA=mB,当A球机械能最小时,杆与竖直方向夹角的余弦值为多大?A球机械能的最小值为多大?(选水平面为参考平面)(杆连接的做功问题,杆的两端分别连接一个物体,做功有什么特点?)三弹簧模型1.轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。2.轻弹簧的规律轻弹簧各处受力相等,轻弹簧产生的弹力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;弹簧的弹力不会发生突变。3.弹力做功
14、与电场力、重力做功一样与过程没有关系,至于初末位置有关。 公式在高中课本中没有出现过,所以一般不能直接用。而是根据对称和类比的思想来解决问题。例1:如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:中弹簧的左端固定在墙上,中弹簧的左端受大小也为F的拉力作用,中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动. 若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有 ( )FAl2l1 Bl4l3 Cl1l3 Dl2l4(搞清楚弹簧的读数与弹簧受力的关系:如果弹簧测力计的读数
15、为F,那么弹簧两端受到力的大小都为F)例2:如图,a、b、c为三个物块,M、N为两个轻弹簧,R为跨过定滑轮的轻绳,系统静止,则下列说法中正确的有( )A.弹簧N一定处于伸长状态 B.弹簧N可能处于原长状态C.弹簧M一定处于压缩状态 D.弹簧M可能处于伸长状态 变式训练:图所示,重为G的质点P与三根劲度系数相同的轻弹簧A、B、C相连,C处于竖直方向,静止时相邻弹簧间的夹角均为120.已知弹簧A、B对质点P的弹力大小各为G/2,弹簧C对质点P的弹力大小可能为()A3G/2 BG/2C0 D3G(弹簧既有可能被拉伸也有可能被压缩,全面的思维才是王道 !)例3:如图所示,质量为m的物体被劲度系数为k2
16、的弹簧2悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧1,托住下弹簧的端点A用力向上压,当弹簧2的弹力大小为mg/2时,弹簧1的下端点A上移的高度是多少?变式训练:如图所示,两木块的质量分别为m1和m2,两轻质弹簧A、B的劲度系数分别为k1和k2,若在m1上再放一质量为m0的物体,待整个系统平衡时,m1下降的位移为多少?(弹簧的末端移动问题,末端移动量和每个弹簧的末端移动量有什么关系呢?能很好的用这几个公式?)例4: 如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度
17、后再下落,如此反复。通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则A.时刻小球动能最大B. 时刻小球动能最大C. 这段时间内,小球的动能先增加后减少D. 这段时间内,小球增加的动能等于弹簧减少的弹性势能变式训练1.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度.小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中Oa段和cd段为直线,根据此图象可知,小孩和蹦床相接触的时间为A.t2t4B.t1t4C.t1t5 D.t2t5变式训练2:如图所示,一弹簧台秤的秤盘和弹簧质量都不计,盘内放一物体P处于静止。P的质量
18、M=12kg,弹簧的劲度系数k=800N/m。现在给P施加一竖直向上的力F,使P从静止开始做匀加速运动。已知头0.2s内F是变力,在0.2s以后F是恒力。求F的最大值和最小值。(和弹簧弹力有关的牛顿运动定律问题,有加速度变化的临界问题,也有加速度恒定的问题,怎么样突破,那就需要耐心了!)四瞬时突变问题例1:质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 ( )AaA=aB=0 BaA=aB=g CaAg,aB=0 DaAg,aB=0变式训练1.如图2所示x、y、z为三个物块,K为轻质弹簧,L为轻线,系统处于平衡状态
19、现若将L突然剪断,用ax、ay分别表示刚剪断时x、y的加速度,则有( )Aax0、ay0 Bax0、ay0Cax0、ay0 Dax0、ay0变式训练2如图所示,一条轻弹簧和一根细绳共同拉住一个质量为的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是,若突然剪断细线瞬间,弹簧拉力大小是多少?将弹簧改为细绳,剪断的瞬间上张力如何变化?(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,物理学上称之为突变问题。)答案一轻绳模型1.轻绳模型的特点:“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。
20、它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。2.轻绳模型的规律:轻绳各处受力相等,且拉力方向沿着绳子;轻绳不能伸长;用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;轻绳的弹力会发生突变。3.绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。4.力对绳子做的功,全部转化为绳对物体的做的功。5.绳连动问题:当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速
21、度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为 时, 例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A、B两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为,绳子张力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为,绳子张力为F3,不计摩擦,则( BD )A= B=F2 F3 DF1 =F2 F31-1如图所示,轻绳上端固定在天花板上的O点,下端悬挂一个重为10 N的物体A,B是固定的表面光滑的小圆柱体.当A静止时,轻绳与天花板的夹角为30,B受到绳的压
22、力是 ( B )A.5 N B.10 NC.5 N D.10 N1-2.相距4m的两根柱子上拴着一根长为5m的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计摩擦,当系统平衡时,AO绳和BO绳受到的拉力T为多少?如果将细绳一端的悬点B向上移动些,二绳张力大小的变化情况是什么?(150N,不 变化)(细绳绕过滑轮,相当于“活结”,也就是一根绳子,一根绳子的拉力处处相等。)例2:如图所示,三根长度均为l的轻绳分别连接于C、D两点,A、B两端被悬挂在水平天花板上,相距2l.现在C点上悬挂一个质量为m的重物,为使CD绳保持水平,在D点上可施加力的最小值为 ( C) A. mg B. mg C.
23、 mg D. mg2-1一段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的绳( A )A必定是OA B.必定是OBC必定是OC D.可能是OB,也可能是OC2-2如图所示,物体的质量为两根轻细绳和的一端连接于竖直墙上,另一端系于物体上,当、均伸直时,、的夹角,在物体上另施加一个方向也与水平线成的拉力,若要使绳都能伸直,求拉力的大小范围F的取值范围为:F2-3.如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时 (D )A绳OA的拉
24、力逐渐增大 B绳OA的拉力逐渐减小C绳OA的拉力先增大后减小 D绳OA的拉力先减小后增大2-4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m1 = 4Kg和m2 = 2Kg的物体,如图所示。在滑轮之间的一段绳上悬挂物体m,为使三个物体不可能保持平衡,求m的取值范围。(只要求个别学生做) m平衡时的取值范围是2Kg m 6Kg,(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。)例3:如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G1,圆顶形降落伞伞面的重力为G2,有8条相同的拉线,一端与飞行员相邻(拉线重力不
25、计),另一端均匀分布在伞面边缘上,每根拉线和竖直方向都成300角.那么每根拉线上的张力大小为( A )A. B.123C. D.3-1:三根不可伸长的相同的轻绳,一端系在半径为r0的环1上,彼此间距相等,绳穿过半径为r0的第2个圆环,另一端同样地系在半径为2r0的环3上,如图所示,环1固定在水平面上,整个系统处于平衡状态.试求第2个环中心与第3个环中心之间的距离.(三个环都是用相同的金属丝制作的,摩擦不计) (只要求少数同学做)(立体图形和“活结”,立体图形和“死结”,你能分清吗?揭开神秘的面纱吧!)例4:如左图,若已知物体A的速度大小为vA,求重物B的速度大小? 4-1.如图所示,当小车A以
26、恒定的速度v向左运动时,则对于B物体来说,下列说法正确的是( AC )A加速上升 B匀速上升CB物体受到的拉力大于B物体受到的重力DB物体受到的拉力等于B物体受到的重力(绳连动问题:需要搞清楚物体的速度和绳的速度之间的关系哟!)例5:如图所示,在与水平方向夹角为的恒力F的作用下,物体通过的位移为S,则力F做的功为多少?W=Fscos+Fs 5-1:一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图828所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H提升
27、时,车加速向左运动,沿水平方向从A经过B驶向C设A到B的距离也为H,车经过B点时的速度为vB求车由A移到B的过程中,绳Q端的拉力对物体做的功?(通过绳对物体做功:对绳做了多少功,全部转化为力对物体做的功。)二轻杆模型1.轻杆模型的特点:轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。2.轻杆模型的规律:轻杆各处受力相等,其力的方向不一定沿着杆的方向;轻杆不能伸长或压缩;轻杆受到的弹力的方式有拉力或压力。杆对物体的力一般只能被动分析,而不能主动出击(即根据运动状态进行受力分析)3.有转轴的杆给物体的力一般沿着杆的方向并且通过转
28、轴。4.杆连动的处理思路与方法和处理绳连动的相同例1:如图所示,一根弹性杆的一端固定一个重力是2 N的小球,小球处于静止状态时,弹性杆对小球的弹力( D ) A.大小为2 N,方向平行于斜面向上 B.大小为1 N,方向平行于斜面向上 C.大小为2 N,方向垂直于斜面向上 D.大小为2 N,方向竖直向上 1-1:如图所示,小车上固定一弯折硬杆ABC,杆C端固定一质量为m的小球,已知ABC,当小车以加速度a向左做匀加速直线运动时,杆C端对小球的作用力大小为多少。(固定杆,也叫做没有转轴的轻杆,它给结点的力的方向怎么来确定呢?)例2:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细
29、绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的点,整个系统处于平衡状态。现把拴于墙上点的绳端向上移动,并保证系统始终处于平衡状态,则轻杆的作用力如何变化?(轻杆的作用力在逐渐减小)5、一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示现将细绳缓慢往左拉,使杆BO与杆AO间的夹角逐渐减小,则在此过程中,拉力F及杆BO所受压力FN的大小变化情况是()AFN先减小,后增大 BFN始终不变CF先减小,后增大 DF始终不变(具有转轴的杆,当它缓慢转动时,感受力的特点是什么?应该怎么处理呢?)例3:如图所示,轻杆的两端分别连着A、
30、B两球,B球处于水平地面,A球靠在竖直墙壁上,由于地面打滑,B球沿水平地面向左滑动,A球靠着墙面向下滑。某时,B球滑到图示的位置,速度VB =10m /s,则此时VA = m /s (sin370=0.6 cos37o=0.8 )vA=7.5m/s3-1如图所示,一轻杆两端分别固定质量为mA和mB的两个小球A和B(可视为质点)。将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成角时,A球沿槽下滑的速度为VA,求此时B球的速度VB?vAcos37=vBco53530BAVBVA(杆连动问题:和绳连动问题有相似的地方吗?如果有,那就“移花接木”吧)例4:如图所示,一根轻质细杆的两端分别固定着A、B两
31、只质量均为m的小球,O点是一光滑水平轴,已知AO=a,BO=2a,使细杆从水平位置由静止开始转动,当B球转到O点正下方时,它对细杆的拉力大小是多大?T=1.8mg,4-1如图14所示,A、B两小球用轻杆连接,A球只能沿内壁光滑的竖直滑槽运动,B球处于光滑水平面内开始时杆竖直,A、B两球静止由于微小的扰动,B开始沿水平面向右运动已知A球的质量为mA,B球的质量为mB,杆长为L则:(1)A球着地时的速度为多大?(2)A球机械能最小时,水平面对B球的支持力为多大?(3)若mA=mB,当A球机械能最小时,杆与竖直方向夹角的余弦值为多大?A球机械能的最小值为多大?(选水平面为参考平面)N=mBg(杆连接
32、的做功问题,杆的两端分别连接一个物体,做功有什么特点?)三弹簧模型1.轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。2.轻弹簧的规律轻弹簧各处受力相等,轻弹簧产生的弹力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;弹簧的弹力不会发生突变。3.弹力做功与电场力、重力做功一样与过程没有关系,至于初末位置有关。 公式在高中课本中没有出现过,所以一般不能直接用。而是根据对称和类比的思想来解决问题。例1:如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各
33、不相同:中弹簧的左端固定在墙上,中弹簧的左端受大小也为F的拉力作用,中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动. 若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有 ( )FAl2l1 Bl4l3 Cl1l3 Dl2l4(搞清楚弹簧的读数与弹簧受力的关系:如果弹簧测力计的读数为F,那么弹簧两端受到力的大小都为F)例2:如图,a、b、c为三个物块,M、N为两个轻弹簧,R为跨过定滑轮的轻绳,系统静止,则下列说法中正确的有( )A.弹簧N一定处于伸长状态 B.弹簧N可能处于原长状态C.弹簧M一定处于压缩状态 D.弹簧M
34、可能处于伸长状态 2-1:如图所示,重为G的质点P与三根劲度系数相同的轻弹簧A、B、C相连,C处于竖直方向,静止时相邻弹簧间的夹角均为120.已知弹簧A、B对质点P的弹力大小各为G/2,弹簧C对质点P的弹力大小可能为()A3G/2 BG/2C0 D3G(弹簧既有可能被拉伸也有可能被压缩,全面的思维才是王道 !)例3:如图所示,质量为m的物体被劲度系数为k2的弹簧2悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧1,托住下弹簧的端点A用力向上压,当弹簧2的弹力大小为mg/2时,弹簧1的下端点A上移的高度是多少?上移的高度是或.3-1:如图所示,两木块的质量分别为m1和m2,两轻质弹簧A、B的劲度
35、系数分别为k1和k2,若在m1上再放一质量为m0的物体,待整个系统平衡时,m1下降的位移为多少?x=(XA+XB)-(XA+xB)= (弹簧的末端移动问题,末端移动量和每个弹簧的末端移动量有什么关系呢?能很好的用这几个公式?)例4: 如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复。通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则()A.时刻小球动能最大B. 时刻小球动能最大C. 这段时间内,小球的动能先增加
36、后减少D. 这段时间内,小球增加的动能等于弹簧减少的弹性势能4-1.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度.小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中Oa段和cd段为直线,根据此图象可知,小孩和蹦床相接触的时间为 (C)A.t2t4B.t1t4C.t1t5 D.t2t54-2:如图所示,一弹簧台秤的秤盘和弹簧质量都不计,盘内放一物体P处于静止。P的质量M=12kg,弹簧的劲度系数k=800N/m。现在给P施加一竖直向上的力F,使P从静止开始做匀加速运动。已知头0.2s内F是变力,在0.2s以后F是恒力。求F的最大值和最小值。 Fmin
37、=ma+mg-kx0=90(N) Fmin=ma+mg=210(N)4-3如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长然后使托盘以加速度a竖直向下做匀加速直线运动(ag),试求托盘向下运动多长时间能与物体脱离?(和弹簧弹力有关的牛顿运动定律问题,有加速度变化的临界问题,也有加速度恒定的问题,怎么样突破,那就需要耐心了!)四瞬时突变问题例1:质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 ( C )AaA=aB=0 BaA=aB=g CaAg,aB=0 DaA
38、g,aB=01-1.如图2所示x、y、z为三个物块,K为轻质弹簧,L为轻线,系统处于平衡状态现若将L突然剪断,用ax、ay分别表示刚剪断时x、y的加速度,则有( B )Aax0、ay0 Bax0、ay0Cax0、ay0 Dax0、ay01-2如图所示,一条轻弹簧和一根细绳共同拉住一个质量为的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是,若突然剪断细线瞬间,弹簧拉力大小是多少?将弹簧改为细绳,剪断的瞬间上张力如何变化?(绳子,剪断绳子后拉力发生变化,为(弹簧,剪断绳子后拉力不变化,仍然为)(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,物理学上称之为突变问题。)1、发生以下情形,本协议即终止:(1)、公司因客观原因未能设立;(2)、公司营业执照被依法吊销;(3)、公司被依法宣告破产;(4)、甲乙丙三方一致同意解除本协议。2、本协议解除后:(1)甲乙丙三方共同进行清算,必要时可聘请中立方参与清算;(2)若清算后有剩余,甲乙丙三方须在公司清偿全部债务后,方可要求返还出资、按出资比例分配剩余财产。(3)若清算后有亏损,各方以出资比例分担,遇有股东须对公司债务承担连带责任的,各方以出资比例偿还。-