高中自主招生数学试题(另附详细答案).doc

上传人:豆**** 文档编号:29896347 上传时间:2022-08-02 格式:DOC 页数:97 大小:1.57MB
返回 下载 相关 举报
高中自主招生数学试题(另附详细答案).doc_第1页
第1页 / 共97页
高中自主招生数学试题(另附详细答案).doc_第2页
第2页 / 共97页
点击查看更多>>
资源描述

《高中自主招生数学试题(另附详细答案).doc》由会员分享,可在线阅读,更多相关《高中自主招生数学试题(另附详细答案).doc(97页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高中自主招生数学试题(另附详细答案)2015年无为中学高中自主招生数学试题 2015年无为中学高中自主招生数学试题一选择题(共6小题)1已知函数,若使y=k成立的x值恰好有三个,则k的值为()A0B1C2D32如果|xa|=a|x|(x0,xa),那么=()A2aB2xC2aD2x3a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A1999B20

2、00C2001D不能确定4(2013莒南县一模)如图,两个反比例函数y=和y=(其中k1k20)在第一象限内的图象依次是C1和C2,设点P在C1上,PCx轴于点C,交C2于点A,PDy轴于点D,交C2于点B,则四边形PAOB的面积为() Ak1+k2Bk1k2Ck1k2D5如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)y轴上一点P(0,2)绕点A旋转180得点P1,点P1绕点B旋转180得点P2,点P2绕点C旋转180得点P3,点P3绕点D旋转180得点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(20

3、10,2)B(2010,2)C(2012,2)D(0,2)6如图,在半径为1的O中,AOB=45,则sinC的值为()ABCD二填空题(共7小题)7三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是_8如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,DEF的面积是1,那么正方形ABCD的面积是_ 9(2013沐川县二模)如图,点A1,A2,A3,A4,An在射线OA上,点B1,B2,B3,Bn1在射线OB上,且A1B1A2B2A3B3An1Bn1,A2B1A3B2A4B3AnBn1,A1A2B1,A2A3B2,An1AnBn1为阴影三角形,若A2B1B2,

4、A3B2B3的面积分别为1、4,则A1A2B1的面积为_;面积小于2011的阴影三角形共有_个10你见过像,这样的根式吗?这一类根式叫做复合二次根式有一些复合二次根式可以化简,如请用上述方法化简:=_11不等式组有六个整数解,则a的取值范围为_12小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=1时,突发奇想:x2=1在实数范围内无解,如果存在一个数i,使i2=1,那么若x2=1,则x=i,从而x=i是方程x2=1的两个根据此可知:i可以运算,例如:i3=i2i=1i=i,则i2011=_,方程x22x+2=0的两根为 _(根用i表示)13(2013日照)如右图,直线AB交双

5、曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BMx轴于M,连结OA若OM=2MC,SOAC=12则k的值为_三解答题(共7小题)14在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是_,乙校选手所得分数的众数是_;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训

6、后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率15(2012兰州)若x1、x2是关于一元二次方程ax2+bx+c(a0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1x2=把它称为一元二次方程根与系数关系定理如果设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点为A(x1,0),B(x2,0)利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1x2|=;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的

7、顶点为C,显然ABC为等腰三角形(1)当ABC为直角三角形时,求b24ac的值;(2)当ABC为等边三角形时,求b24ac的值 16(2013威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,BOA=90抛物线y=ax2+bx+c过点A,O,B,顶点为点E(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FEx轴,交直线AB于点F,连接OD,CF,CF交x轴于点M试判断OD与CF是否平行,并说明理由17(2012内江)如果方程x2+px+q=0的两个根是x1,x2,

8、那么x1+x2=p,x1x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a215a5=0,b215b5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值18(2013钦州)如图,在RtABC中,A=90,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tanBOD=(1)求O的半径OD;(2)求证:AE是O的切线;(3)求图中两部分阴影面积的和19(2013益阳)

9、如图1,在ABC中,A=36,AB=AC,ABC的平分线BE交AC于E(1)求证:AE=BC;(2)如图(2),过点E作EFBC交AB于F,将AEF绕点A逆时针旋转角(0144)得到AEF,连结CE,BF,求证:CE=BF;(3)在(2)的旋转过程中是否存在CEAB?若存在,求出相应的旋转角;若不存在,请说明理由20(2013昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a0)上(1)求抛物线的解析式(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标(3)如图2,若点N在抛物线上,且NBO=ABO,则在

10、(2)的条件下,求出所有满足PODNOB的点P的坐标(点P、O、D分别与点N、O、B对应)答案:2015年无为中学高中自主招生数学试题参考答案与试题解析一选择题(共6小题)1(2011随州)已知函数,若使y=k成立的x值恰好有三个,则k的值为()A0B1C2D3考点:二次函数的图象3578195专题:压轴题;数形结合分析:首先在坐标系中画出已知函数的图象,利用数形结合的方法即可找到使y=k成立的x值恰好有三个的k值解答:解:函数的图象如图:根据图象知道当y=3时,对应成立的x有恰好有三个,k=3故选D点评:此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图

11、象找交点的问题2如果|xa|=a|x|(x0,xa),那么=()A2aB2xC2aD2x考点:二次根式的性质与化简;绝对值;完全平方公式;含绝对值符号的一元一次方程3578195专题:计算题分析:由绝对值的定义可知,一个数的绝对值要么等于它本身,要么等于它的相反数,根据已知条件|xa|=a|x|,得出|x|=x且xa再根据完全平方公式及二次根式的性质=|a|进行化简,最后去括号、合并同类项即可得出结果解答:解:|xa|=a|x|,|x|=x且xaax0,a+x0=|ax|a+x|=ax(a+x)=axax=2x故选D点评:本题考查了绝对值的定义,完全平方公式,二次根式的性质,二次根式的化简及整

12、式的加减运算,难度中等,其中根据绝对值的定义,结合已知条件得出|x|=x且xa是解题的关键3a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A1999B2000C2001D不能确定考点:二次根式的性质与化简3578195分析:将已知等式右边化简,两边比较系数可知a、b、c的值,再计算式子的值解答:解:=,a+b+c=,a=0,b=1,c=1,2a+999b+1001c=2000故选B点评:本题考查了二次根式的性质与化简,将复合二次根式化简并比较系数是解题的关键4(2013莒南县一模)如图,两个反比例函数y=和y=(其中k1k20)在第一象限内的图象依次是C1和C2,设点P

13、在C1上,PCx轴于点C,交C2于点A,PDy轴于点D,交C2于点B,则四边形PAOB的面积为()Ak1+k2Bk1k2Ck1k2D考点:反比例函数系数k的几何意义3578195专题:压轴题;数形结合分析:四边形PAOB的面积为矩形OCPD的面积减去三角形ODB与三角形OAC的面积,根据反比例函数中k的几何意义,其面积为k1k2解答:解:根据题意可得四边形PAOB的面积=S矩形OCPDSOBDSOAC,由反比例函数中k的几何意义,可知其面积为k1k2故选B点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点5(2012南开

14、区一模)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)y轴上一点P(0,2)绕点A旋转180得点P1,点P1绕点B旋转180得点P2,点P2绕点C旋转180得点P3,点P3绕点D旋转180得点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)考点:坐标与图形变化-旋转;等腰梯形的性质3578195专题:规律型分析:由P、A两点坐标可知,点P绕点A旋转180得点P1,即为直线PA与x轴的交点,依此类推,点P2为直线P1B与y轴的交点,由此发现一般规

15、律解答:解:由已知可以得到,点P1,P2的坐标分别为(2,0),(2,2)记P2(a2,b2),其中a2=2,b2=2根据对称关系,依次可以求得:P3(4a2,2b2),P4(2+a2,4+b2),P5(a2,2b2),P6(4+a2,b2)令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(42+a2,b2),由于2010=4502+2,所以点P2010的坐标为(2010,2)故选B点评:本题考查了旋转变换的规律关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律6(2013荆门)如图,在半径为1的O中,AOB=45,则sinC的值为()ABCD考点:圆周角定理;

16、勾股定理;锐角三角函数的定义3578195专题:压轴题分析:首先过点A作ADOB于点D,由在RtAOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值解答:解:过点A作ADOB于点D,在RtAOD中,AOB=45,OD=AD=OAcos45=1=,BD=OBOD=1,AB=,AC是O的直径,ABC=90,AC=2,sinC=故选B点评:此题考查了圆周角定理、三角函数以及勾股定理此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用二填空题(共7小题)7三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是1考点

17、:代数式求值;绝对值3578195专题:计算题分析:由三个数a、b、c的积为负数,可知三数中只有一个是负数,或三个都是负数;又三数的和为正,故a、b、c中只有一个是负数,根据对称轮换式的性质,不妨设a0,b0,c0,求x的值即可解答:解:abc0,a、b、c中只有一个是负数,或三个都是负数;又a+b+c0,a、b、c中只有一个是负数不妨设a0,b0,c0,则ab0,ac0,bc0,x=1+1+111+1=0,当x=0时,ax3+bx2+cx+1=0a+0b+0c=0+1=1故本题答案为1点评:观察代数式,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再

18、讨论有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质8如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,DEF的面积是1,那么正方形ABCD的面积是6考点:面积及等积变换3578195分析:先设BEF的面积是x,由于E是BC中点,那么SDBE=SDCE,易求S正方形=4(1+x),又四边形ABCD是正方形,那么ADBC,AD=BC,根据平行线分线段成比例定理的推论可得BEFDAF,于是SBEF:SDAF=()2,E是BC中点可知BE:AD=1:2,于是SDAF=4x,进而可得S正方形=SABF+SBEF+SADF+SDEF+SDCE=1+x+4x+1+1+x,等量代换可得

19、4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积解答:解:如右图,设BEF的面积是x,E是BC中点,SDBE=SDCE,SBCD=2(1+x),S正方形=4(1+x),四边形ABCD是正方形,ADBC,AD=BC,BEFDAF,SBEF:SDAF=()2,E是BC中点,BE=CE,BE:AD=1:2,SDAF=4x,SABE=SBED,SABF=SDEF=1,S正方形=SABF+SBEF+SADF+SDEF+SDCE=1+x+4x+1+1+x,4(1+x)=1+x+4x+1+1+x,解得x=0.5,S正方形=4(1+x)=4(1+0.5)=6点评:本题考查了面积以及等积变

20、换、相似三角形的判定和性质,解题的关键是找出正方形面积的两种表示方式9(2013沐川县二模)如图,点A1,A2,A3,A4,An在射线OA上,点B1,B2,B3,Bn1在射线OB上,且A1B1A2B2A3B3An1Bn1,A2B1A3B2A4B3AnBn1,A1A2B1,A2A3B2,An1AnBn1为阴影三角形,若A2B1B2,A3B2B3的面积分别为1、4,则A1A2B1的面积为;面积小于2011的阴影三角形共有6个考点:相似三角形的判定与性质;平行线的性质;三角形的面积3578195分析:根据面积比等于相似比的平方,可得出=,=,再由平行线的性质可得出=,=,从而可推出相邻两个阴影部分的

21、相似比为1:2,面积比为1:4,先利用等底三角形的面积之比等于高之比可求出第一个及第二个阴影部分的面积,再由相似比为1:2可求出面积小于2011的阴影部分的个数解答:解:由题意得,A2B1B2A3B2B3,=,=,又A1B1A2B2A3B3,=,=,OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4;B1B2=B2B3=B3B4又A2B1B2,A3B2B3的面积分别为1、4,SA1B1A2=,SA2B2A3=2,继而可推出SA3B3A4=8,SA,4B4A5=32,SA5B5A6=128,SA6B6A7=512,SA7B7A8=2048,故可得小于2011的阴影三

22、角形的有:A1B1A2,A2B2A3,A3B3A4,A4B4A5,A5B5A6,A6B6A7,共6个故答案是:;6点评:此题考查了相似三角形的判定与性质及平行线的性质,解答本题的关键是掌握相似比等于面积比的平方,及平行线分线段成比例,难度较大,注意仔细观察图形,得出规律10你见过像,这样的根式吗?这一类根式叫做复合二次根式有一些复合二次根式可以化简,如请用上述方法化简:=考点:二次根式的性质与化简3578195分析:因为5=2+3=()2+()2,且2=2,由此把原式改为完全平方式,进一步因式分解,化简得出答案即可解答:解:=+故答案为:+点评:此题考查活用完全平方公式,把数分解成完全平方式,

23、进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值11不等式组有六个整数解,则a的取值范围为a考点:一元一次不等式组的整数解3578195分析:先求出不等式组的解集,再根据整数解有六个得到关于a的不等式组,然后解不等式组即可求解解答:解:解不等式组,得4x54a由题意,知此不等式组的六个整数解为3,2,1,0,1,2,则254a3,解得a故答案为a点评:本题考查了一元一次不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了12小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=1时,突发奇想:x

24、2=1在实数范围内无解,如果存在一个数i,使i2=1,那么若x2=1,则x=i,从而x=i是方程x2=1的两个根据此可知:i可以运算,例如:i3=i2i=1i=i,则i2011=i,方程x22x+2=0的两根为 1i(根用i表示)考点:一元二次方程的应用3578195专题:新定义分析:(1)根据题中规律可知i1=1,i2=1,i3=i,i4=1,可以看出4个一次循环,可以此求解(2)把方程x22x+2=0变形为(x1)2=1,根据题目规律和平方根的定义可求解解答:解:(1)i2011=i5024+3=i(2)x22x+2=0(x1)2=1x1=ix=1+i或x=1i故答案为:i;1i点评:本题

25、考查了用配方法解一元二次方程以及找出题目中的规律,从而求得解13(2013日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BMx轴于M,连结OA若OM=2MC,SOAC=12则k的值为8考点:反比例函数与一次函数的交点问题3578195专题:压轴题分析:过A作ANOC于N,求出ON=MN=CM,设A的坐标是(a,b),得出B(2a,b),根据三角形AOC的面积求出ab=8,把B的坐标代入即可求出答案解答:解:过A作ANOC于N,BMOCANBM,B为AC中点,MN=MC,OM=2MC,ON=MN=CM,设A的坐标是(a,b),则B(2a,b),SOAC=123

26、ab=12,ab=8,B在y=上,k=2ab=ab=8,故答案为:8点评:本题考查了一次函数和反比例函数的交点问题和三角形的面积的应用,主要考查学生的计算能力三解答题(共7小题)14在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是90分,乙校选手所得分数的众数是80分;(2)请补全条形统计图;(3)比赛后,教委决定

27、集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率考点:条形统计图;扇形统计图;中位数;众数;列表法与树状图法3578195分析:(1)先设甲学校学生获得100分的人数为x,根据甲、乙两学校参加数学竞赛的学生人数相等,可得出方程,解出x的值,继而可得出甲校选手所得分数的中位数,及乙校选手所得分数的众数;(2)列出树状图后,求解即可得出所选两位选手来自同一学校的概率解答:解:(1)先设甲学校学生获得100分的人数为x,由题意得,x=(x+2+3+5),解得:x=2,即获得100分的人数有2人故可得甲校选

28、手所得分数的中位数是90分;乙校选手所得分数的众数80分(2)则两位选手来自同一学校的概率=点评:本题考查了条形统计图及扇形统计图的知识,要求同学们有一定的读图能力,能在条形统计图及扇形统计图中得到解题需要用到的信息,有一定难度15(2012兰州)若x1、x2是关于一元二次方程ax2+bx+c(a0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=,x1x2=把它称为一元二次方程根与系数关系定理如果设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点为A(x1,0),B(x2,0)利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1x2|=;参考

29、以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然ABC为等腰三角形(1)当ABC为直角三角形时,求b24ac的值;(2)当ABC为等边三角形时,求b24ac的值考点:抛物线与x轴的交点;根与系数的关系;等腰三角形的性质;等边三角形的性质3578195专题:压轴题分析:(1)当ABC为直角三角形时,由于AC=BC,所以ABC为等腰直角三角形,过C作CEAB于E,则AB=2CE根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=|=,列出方程,解方程即可求出b24ac的值;(2)当ABC为等边三

30、角形时,解直角ACE,得CE=AE=,据此列出方程,解方程即可求出b24ac的值解答:解:(1)当ABC为直角三角形时,过C作CEAB于E,则AB=2CE抛物线与x轴有两个交点,=b24ac0,则|b24ac|=b24aca0,AB=,又CE=|=,b24ac0,b24ac=4;(2)当ABC为等边三角形时,由(1)可知CE=,b24ac0,b24ac=12点评:本题考查了等腰直角三角形、等边三角形的性质,抛物线与x轴的交点及根与系数的关系定理,综合性较强,难度中等16(2013威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,BOA=90抛物线y=ax2

31、+bx+c过点A,O,B,顶点为点E(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FEx轴,交直线AB于点F,连接OD,CF,CF交x轴于点M试判断OD与CF是否平行,并说明理由考点:二次函数综合题3578195专题:压轴题分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据BOA=90得到直线OB的解析式为y=x,则,通过解该方程组来求点B的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c的方程组,通过解方程组即可

32、求得该抛物线的解析式;(3)如图,作DNx轴于点N欲证明OD与CF平行,只需证明同位角CMN与DON相等即可解答:解:(1)由直线y=x+与直线y=x交于点A,得,解得,点A的坐标是(3,3)BOA=90,OBOA,直线OB的解析式为y=x又点B在直线y=x+上,解得,点B的坐标是(1,1)综上所述,点A、B的坐标分别为(3,3),(1,1)(2)由(1)知,点A、B的坐标分别为(3,3),(1,1)抛物线y=ax2+bx+c过点A,O,B,解得,该抛物线的解析式为y=x2x,或y=(x)2顶点E的坐标是(,);(3)OD与CF平行理由如下:由(2)知,抛物线的对称轴是x=直线y=x与抛物线的

33、对称轴交于点C,C(,)设直线BC的表达式为y=kx+b(k0),把B(1,1),C(,)代入,得,解得,直线BC的解析式为y=x+直线BC与抛物线交于点B、D,x+=x2x,解得,x1=,x2=1把x1=代入y=x+,得y1=,点D的坐标是(,)如图,作DNx轴于点N则tanDON=FEx轴,点E的坐标为(,)点F的纵坐标是把y=代入y=x+,得x=,点F的坐标是(,),EF=+=CE=+=,tanCFE=,CFE=DON又FEx轴,CMN=CFE,CMN=DON,ODCF,即OD与CF平行点评:本题考查了二次函数综合题其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点

34、问题,平行线的判定以及锐角三角函数的定义等知识点此题难度较大17(2012内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=p,x1x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a215a5=0,b215b5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值考点:根与系数的关系;根的判别式3578195专题:压轴题分析:(1)先设方程x2+mx+n=0,(n0)的两个根分别是x1,x2,得出+=,=,再根据这个一元二

35、次方程的两个根分别是已知方程两根的倒数,即可求出答案(2)根据a、b满足a215a5=0,b215b5=0,得出a,b是x215x5=0的解,求出a+b和ab的值,即可求出的值(3)根据a+b+c=0,abc=16,得出a+b=c,ab=,a、b是方程x2+cx+=0的解,再根据c240,即可求出c的最小值解答:解:(1)设方程x2+mx+n=0,(n0)的两个根分别是x1,x2,则:+=,=,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)a、b满足a215a5=0,b215b5=0,a,b是x215x5=0的解,当ab时,a+b=15,ab=

36、5,=47当A=B时,原式=2;(3)a+b+c=0,abc=16,a+b=c,ab=,a、b是方程x2+cx+=0的解,c240,c20,c是正数,c3430,c343,c4,正数c的最小值是4点评:本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法18(2013钦州)如图,在RtABC中,A=90,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tanBOD=(1)求O的半径OD;(2)求证:AE是O的切线;(3)求图中两部分阴影面积的和考点:切线的判定与性质;扇形面积的计算3

37、578195专题:计算题;压轴题分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tanBOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积扇形DOF的面积扇形EOG的面积,求出即可解答:解:(1)AB与圆O相切,ODAB,在RtBDO中,BD=2,tanBOD=,OD=3;(2)连接OE,AE=OD=

38、3,AEOD,四边形AEOD为平行四边形,ADEO,DAAE,OEAC,又OE为圆的半径,AE为圆O的切线;(3)ODAC,=,即=,AC=7.5,EC=ACAE=7.53=4.5,S阴影=SBDO+SOECS扇形FODS扇形EOG=23+34.5=3+=点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键19(2013益阳)如图1,在ABC中,A=36,AB=AC,ABC的平分线BE交AC于E(1)求证:AE=BC;(2)如图(2),过点E作EFBC交AB于F,将AEF绕点A逆时针旋转角(0144)得

39、到AEF,连结CE,BF,求证:CE=BF;(3)在(2)的旋转过程中是否存在CEAB?若存在,求出相应的旋转角;若不存在,请说明理由考点:旋转的性质;等腰三角形的性质;等腰梯形的判定3578195专题:压轴题分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:EAC=FAB,AE=AF,根据全等三角形证明方法得出即可;(3)分别根据当点E的像E与点M重合时,则四边形ABCM为等腰梯形,当点E的像E与点N重合时,求出即可解答:(1)证明:AB=BC,A=36,ABC=C=72,又BE平分ABC,ABE=CBE=36,BEC=180CCBE

40、=72,ABE=A,BEC=C,AE=BE,BE=BC,AE=BC(2)证明:AC=AB且EFBC,AE=AF;由旋转的性质可知:EAC=FAB,AE=AF,在CAE和BAF中,CAEBAF,CE=BF(3)存在CEAB,理由:由(1)可知AE=BC,所以,在AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:当点E的像E与点M重合时,则四边形ABCM为等腰梯形,BAM=ABC=72,又BAC=36,=CAM=36 当点E的像E与点N重合时,由ABl得,AMN=BAM=72,AM=AN,ANM=AMN=72,MAN=180272=36,=CAN=CAM+MAN=72所以,当旋转角为36或72时,CEAB点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁