一次函数的知识点复习课ppt课件.ppt

上传人:飞****2 文档编号:29573616 上传时间:2022-07-31 格式:PPT 页数:30 大小:1.16MB
返回 下载 相关 举报
一次函数的知识点复习课ppt课件.ppt_第1页
第1页 / 共30页
一次函数的知识点复习课ppt课件.ppt_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《一次函数的知识点复习课ppt课件.ppt》由会员分享,可在线阅读,更多相关《一次函数的知识点复习课ppt课件.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第十一章第十一章 一次函数的知识一次函数的知识点复习课点复习课pptppt知识点 回顾一、知识结构一、知识结构1. 叫变量叫变量, 叫常量叫常量.数值发生变化的量数值发生变化的量数值始终不变的量数值始终不变的量 在一个变化过程中,如果有两在一个变化过程中,如果有两个变量个变量x x与与y y,并且对于,并且对于x x的每一个的每一个确定的值,确定的值,y y都有都有唯一唯一确定的值与确定的值与其对应,那么我们就说其对应,那么我们就说x x是自变量,是自变量,y y是是x x的函数的函数. .2.函数定义:函数定义: ( (所用方法所用方法: :描点法描点法) ) 3. 3.函数的图象:函数的图

2、象:对于一个函数,如果把自变对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。就是这个函数的图象。列表法,列表法, 解析式法解析式法, 图象法图象法. .5. 5.函数的三种表示方法:函数的三种表示方法:4 4、描点法画图象的步骤:、描点法画图象的步骤:列表、描点、列表、描点、连线。连线。6 6、自变量的取值范围、自变量的取值范围(1 1)分母不为)分母不为0 0,(2 2)开偶次方的被开方数大于等于)开偶次方的被开方数大于等于0 0,(

3、3 3)使实际问题有意义。)使实际问题有意义。1、求下列函数中自变量、求下列函数中自变量x的取值范围的取值范围 (1)y= x(x+3);); (2)y=(3)y= (4)y=(5)y= 843x12 xxx11532xx 2、下列四组函数中,表示同一函数的是()、下列四组函数中,表示同一函数的是()A、y=x与与y= B、y=x与与y=( )2C、y=x与与y=x2/x D、y=x与与y=x3x3xxyo.3、画函数图象的步骤、画函数图象的步骤1列表列表 2描点描点 3连线连线例:画出例:画出Y=3x+3的图象的图象 x0-1y30 描点,连线如图:描点,连线如图:解:列表得:解:列表得:3

4、-1 所有的一次函数的图象都是一条直所有的一次函数的图象都是一条直线。线。 二、一次函数的概念二、一次函数的概念1、一次函数的概念:、一次函数的概念:函数函数y=_(k、b为常数,为常数,k_)叫做叫做一次函数一次函数。当当b_时,函数时,函数y=_(k_)叫做叫做正比例函数。正比例函数。kx b = kx注意注意点:点: 、解析式中自变量、解析式中自变量x的次数是的次数是_次,次,、比例系数比例系数_。1K0 2、正比例函数、正比例函数y=kx(k0)的图象是过点的图象是过点(_),),(_)的的_。 3、一次函数、一次函数y=kx+b(k0)的图象是过点(的图象是过点(0,_),(_,0)

5、的的_。0,01,k 一条直线一条直线b一条直线一条直线kb知识点回顾1.下列函数关系式中,那些是一次函数?下列函数关系式中,那些是一次函数?哪些是正比例函数?哪些是正比例函数?(1)y= - x - 4 (2)y=x2(3)y=2x(4)y=1x(5)y=x/2 (6)y=4/x (7)y=5x-3 (8)y=6x2-2x-1 4.一次函数的性质一次函数的性质函数函数 解析式解析式自变自变量的量的取值取值范围范围图象图象性质性质正比正比例例函数函数 k0k0 一次一次函数函数 k0k0 y=kx(k0) y=kx+b(k0)全体全体实数实数全体全体实数实数000b0b0b00b0b0b0当当

6、k0时,时,y随随x的增大的增大而增大;而增大;当当k0时,时, y随随x的增的增大而减大而减少少. 一次函数一次函数y=kx+b的图象是一条直线,的图象是一条直线,其中其中k决定直线增减性,决定直线增减性,b决定直线与决定直线与y轴的交点位置轴的交点位置. k和和b决定了直线所在的象决定了直线所在的象限限.正比例函数是特殊的一次函数。正比例函数是特殊的一次函数。知识点回顾函数巧记妙语函数巧记妙语 自变量的取值范围:分式分母不为零,偶次根下自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。负不行;零次幂底数不为零,整式、奇次根全能行。 函数图像的移动规律函

7、数图像的移动规律: 若把一次函数解析式写成若把一次函数解析式写成y=k(x+0)+b,则用下面的口诀,则用下面的口诀“左右平移在括号左右平移在括号,上下平移在末稍上下平移在末稍,左正右负须牢记左正右负须牢记,上正下负错不了上正下负错不了”。 一次函数图像与性质口诀一次函数图像与性质口诀:一次函数是直线,图一次函数是直线,图像经过仨象限;正比例函数更简单像经过仨象限;正比例函数更简单,经过原点一直线;经过原点一直线;两个系数两个系数k与与b,作用之大莫小看,作用之大莫小看,k是斜率定夹角是斜率定夹角,b与与Y轴来相见轴来相见,k为正来右上斜为正来右上斜,x增减增减y增减;增减;k为负来左为负来左

8、下展下展,变化规律正相反;变化规律正相反;k的绝对值越大的绝对值越大,线离横轴就越线离横轴就越远。远。 函数学习口决:正比例函数是直线,图象一定过函数学习口决:正比例函数是直线,图象一定过圆点,圆点,k的正负是关键,决定直线的象限,负的正负是关键,决定直线的象限,负k经过二经过二四限,四限,x增大增大y在减,上下平移在减,上下平移k不变,由此得到一次不变,由此得到一次线,向上加线,向上加b向下减,图象经过三个象限,两点决定向下减,图象经过三个象限,两点决定一条线,选定系数是关键。一条线,选定系数是关键。7.两直线的位置关系两直线的位置关系 若直线若直线l1和和l2的解析式为的解析式为y=k1X

9、+b1和和y=k2X+b2,它们的它们的位置关系可由其系数确定:位置关系可由其系数确定:k1 k2l1和和l2相交相交( l1和和l2有且只有一个交点)有且只有一个交点)k1 k2l1和和l2平行平行( l1和和l2没有交点)没有交点)b1 b2k1 k2l1和和l2重合重合b1 b2知识点回顾二、做好读图准备:二、做好读图准备:熟记熟记k、b与直线的位置关系与直线的位置关系观察下面观察下面4个图,说说个图,说说k、b的符号的符号xyoyxoyxoyxok0k0,b0,b0k0,b0)在同一坐标系中的图象可能在同一坐标系中的图象可能是(是( )xyoxyoxyoxyoABCD1.已知一次函数已

10、知一次函数y=kx+b,y随着随着x的增大而减小的增大而减小,且且kb0,则在直角坐标系内它的大致图象是则在直角坐标系内它的大致图象是( ) (A) (B) (C) (D)A图象辨析图象辨析3、如图,已知一次函数、如图,已知一次函数y=kx+b的图的图像像,当当x0 B.y0 C.-2y0 D. y-2. 4、一次函数一次函数y=(m2-4)x+(1-m)和和y=(m+2)x+(m2-3)的图像的图像与与y轴分别交于轴分别交于P,Q两点,若两点,若P、Q点关于点关于x轴对称,则轴对称,则m= 。 -1D5、已知函数、已知函数y=-x+2.当当-1x1时时,y的取值范围的取值范围_.1yx2时,

11、时,y1y2,则,则m的的范围是范围是l直线直线y=3x+b与与y轴的交点的纵坐标为轴的交点的纵坐标为-2,则这条,则这条直线一定不过直线一定不过 象限象限减小减小一、二、四一、二、四0一、三、四一、三、四m2二二练习练习 1. 已知函数已知函数y = ( m+1) x 是正比例函数,是正比例函数, 并且它的图象经过二,四象限,则这个函并且它的图象经过二,四象限,则这个函 数的解析数的解析 式为式为_.| m | - 12. 如果一次函数如果一次函数y=kx+b的图象经过第一、的图象经过第一、三、四象限,则三、四象限,则k0,b02、若正比例函数、若正比例函数y=(m-1)x m -3的图象经

12、过第的图象经过第二、四象限,则二、四象限,则m=()()3、若一次函数、若一次函数y=- x2m -7+m-2的图象经过第三象的图象经过第三象限,则限,则m=()()4、已知、已知m是整数,且一次函数是整数,且一次函数y=(m+4)x+m+2的图象不经过第二象限,则的图象不经过第二象限,则m=( )5、若正比例函数、若正比例函数y=(1-2m)x的图象经过点的图象经过点A(x1,y1)和点)和点B(x2,y2),当),当x1y2,则则m的取值范围是的取值范围是( )2 2 8如图所示的图象分别给出了如图所示的图象分别给出了x与与y的对应关系,其中的对应关系,其中y是是x的函数的是(的函数的是(

13、 )6甲、乙两地相距甲、乙两地相距S千米,某人行完全程所用的时间千米,某人行完全程所用的时间t(时)与他的速度(时)与他的速度v(千米(千米/时)满足时)满足vt=S,在这个变化过,在这个变化过程中,下列判断中错误的是程中,下列判断中错误的是 ( ) AS是变量是变量 Bt是变量是变量 Cv是变量是变量 DS是常量是常量7如图,足球由正五边形皮块(黑色)和正六边形皮如图,足球由正五边形皮块(黑色)和正六边形皮块(白色)缝成,试用正六边形的块数块(白色)缝成,试用正六边形的块数x表示正五边形表示正五边形的块数的块数y,并指出其中的变量和常量(提示:每一个,并指出其中的变量和常量(提示:每一个白色

14、皮块周围连着三个黑色皮块)白色皮块周围连着三个黑色皮块)9、填空题:、填空题:(1)有下列函数:有下列函数: , = = , , 。其中过原点的直。其中过原点的直线是线是_;函数;函数y 随随x 的增大而增大的是的增大而增大的是_;函;函数数y 随随x 的增大而减小的是的增大而减小的是_;图象在第一、二、三;图象在第一、二、三象限的是象限的是_。56xy4 xy34 xy、(2)、如果一次函数、如果一次函数y=kx-3k+6的图象经过原点,那么的图象经过原点,那么k的值为的值为_。(3)、已知、已知y-1与与x成正比例,且成正比例,且x=2时,时,y=4,那么,那么y与与x之间的函数关系式为之

15、间的函数关系式为_。123xyk=2 10、求下图中直线的函数解析式、求下图中直线的函数解析式264-2解:设该正比例函数解析式解:设该正比例函数解析式为为 y = kx 图象过点(图象过点(1,2) k =2 该正比例函数解析式该正比例函数解析式为为 y = 2xxy264-2-6-4-4-6o2211、已知一次函数的图象经过点(、已知一次函数的图象经过点(2,1)和()和(-1,-3)(1)求此一次函数解析式)求此一次函数解析式(2)求此图象与)求此图象与x轴、轴、y轴的交点坐标。轴的交点坐标。 12.已知一次函数图象经过已知一次函数图象经过A(2,-1) 和点和点B,其中点,其中点B是另

16、一是另一条直线条直线y= 5x+3与与y轴的交点,求这个一次函数的解析式轴的交点,求这个一次函数的解析式.14、已知、已知y=y1+y2,y1与与x2成正比例,成正比例,y2与与x-2成正比例,成正比例,当当x=1时,时,y=0;当;当x=-3时,时,y=4,求,求x=3时,时,y的值的值13、已知某一次函数、已知某一次函数在在x=1时,时,y=5,且它的图象与,且它的图象与x轴交点的横坐标是,求这个一次函数的解析式。轴交点的横坐标是,求这个一次函数的解析式。点评:用待定系数法求一次函数用待定系数法求一次函数y=kx+b的解析式,可由已知条的解析式,可由已知条件给出的两对件给出的两对x、y的值

17、,列出关于的值,列出关于k、b的二元一次方程组。由的二元一次方程组。由此求出此求出k、b的值,就可以得到所求的一次函数的值,就可以得到所求的一次函数的解析式。的解析式。1515、已知函数、已知函数y y(4m+1)x(4m+1)x(m(m1)1)(1)m(1)m取什么值时,取什么值时,y y随随x x的增大而减小;的增大而减小;(2)m(2)m取什么值时,这条直线与取什么值时,这条直线与y y轴的交点在轴的交点在x x轴轴下方;下方;(3)m(3)m取什么值时,这条直线不经过第三象限取什么值时,这条直线不经过第三象限 16、求直线、求直线y=2x-1与两坐标轴所围成的三角形与两坐标轴所围成的三

18、角形面积面积17、直线、直线y=kx+3与两坐标轴所围成的三角形与两坐标轴所围成的三角形面积为面积为9,求,求k的值的值1818、已知:函数、已知:函数y = (m+1) x+2 my = (m+1) x+2 m6 6 (1 1)若函数图象过()若函数图象过(1 1 ,2 2),求此函数的解析式。),求此函数的解析式。 (2 2)若函数图象与直线)若函数图象与直线 y = 2 x + 5 y = 2 x + 5 平行,求其函数的解析式。平行,求其函数的解析式。 (3 3)求满足()求满足(2 2)条件的直线与此同时)条件的直线与此同时y = y = 3 x + 1 3 x + 1 的交点的交点

19、 并求这两条直线并求这两条直线 与与y y 轴所围成的三角形面积轴所围成的三角形面积 解解:(:(1 1)由题意)由题意: :2=2=(m+1(m+1)+2m+2m6 6解得解得 m = 9m = 9 y = 10 x+12 y = 10 x+12(2) (2) 由题意,由题意,m +1= 2m +1= 2 解得解得 m = 1m = 1 y = 2x y = 2x4 4(3) (3) 由题意得由题意得1342xyxy解得解得: x =1 , y = : x =1 , y = 2 2 这两直线的交点是(这两直线的交点是(1 1 ,2 2)y = 2xy = 2x4 4 与与y y 轴交于轴交于

20、( 0 , 4 )( 0 , 4 )y = y = 3x + 13x + 1与与y y 轴交于轴交于( 0 , 1( 0 , 1)x xy yo o1 11 14 4(1, (1, 2)2)S S=25-2利用数学模型解决实际问题利用数学模型解决实际问题19.某商场文具部的某种笔售价某商场文具部的某种笔售价25元,练习本每本售价元,练习本每本售价5元。该商元。该商场为了促销制定了两种优惠方案供顾客选择。甲:买一支笔赠送场为了促销制定了两种优惠方案供顾客选择。甲:买一支笔赠送一本练习本。乙:按购买金额打九折付款。某校欲购这种笔一本练习本。乙:按购买金额打九折付款。某校欲购这种笔10支,支,练习本

21、练习本x(x 10)本,如何选择方案购买呢?本,如何选择方案购买呢?解:甲、乙两种方案的实际金额解:甲、乙两种方案的实际金额y元与练习本元与练习本x本之间的关系式是:本之间的关系式是:y甲甲=(x-10)5+2510=5x+200 (x 10)y乙乙=(1025+5x) 0.9=4.5x+225 (x 10)解方程组解方程组y=5x+200y=4.5x+225得得x=50y=450oxy1050200由图象可以得出同样结果由图象可以得出同样结果当当10 x50时,时,y甲甲50时,时,y甲甲y乙乙所以我的建议为:所以我的建议为: 20 20 小星以小星以2 2米米/ /秒的速度起跑后,先匀速跑

22、秒的速度起跑后,先匀速跑5 5秒,秒,然后突然把速度提高然后突然把速度提高4 4米米/ /秒,又匀速跑秒,又匀速跑5 5秒。试写秒。试写出这段时间里他的跑步路程出这段时间里他的跑步路程s s(单位:米)随跑步(单位:米)随跑步时间时间x x(单位:秒)变化的函数关系式,并画出函(单位:秒)变化的函数关系式,并画出函数图象。数图象。解解: :依题意得依题意得 s=2xs=2x(0 x5) (0 x5) s=10+6(x-5) s=10+6(x-5) (5x10)(5x10)100s(米)50 x(秒)4010s(米)105x(秒)x(x(秒)秒)s(s(米米) )o o 5 5101010104

23、040s=2x (0 x5) s=2x (0 x5) s=10+6(x-5) (5x10)s=10+6(x-5) (5x10) 21、柴油机在工作时油箱中的余油量柴油机在工作时油箱中的余油量Q(千克)千克)与工作时间与工作时间t(小时)成一次函数关系,当工作开始时(小时)成一次函数关系,当工作开始时油箱中有油油箱中有油40千克,工作千克,工作3.5小时后,油箱中余油小时后,油箱中余油22.5千克千克(1)写出余油量写出余油量Q与时间与时间t的函数关系式;(的函数关系式;(2)画出)画出这个函数的图象。这个函数的图象。解:()设一次函数解:()设一次函数ktb。把。把t=0,Q=40;t=3.5

24、,Q=22.5分别代入上式,得分别代入上式,得bkb5 . 35 .2240解得解得405bk解析式为:解析式为:Qt+40(0t8)()、()、点评点评:(:(1)求出函数关系式时,)求出函数关系式时,必须找出自变量的取值范围。必须找出自变量的取值范围。 (2)画函数图象时,应)画函数图象时,应根据函数自变量的取值范围来根据函数自变量的取值范围来确定图象的范围。确定图象的范围。204080t (小时小时)Q (千克)千克)图象是包括图象是包括两端点的线段两端点的线段.AB t 0 8 Q 40 02222、如图,某航空公司托运行李的费用与托运、如图,某航空公司托运行李的费用与托运行李重量的关系为线型函数,由图可知行李行李重量的关系为线型函数,由图可知行李的重量只要不超过的重量只要不超过_公斤,就可免费托公斤,就可免费托运运

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁