《布朗运动的计算ppt课件.ppt》由会员分享,可在线阅读,更多相关《布朗运动的计算ppt课件.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物2. 与布朗运动有关的随机过程与布朗运动有关的随机过程过程过程1:d维布朗运动维布朗运动采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物过程过程2:2( ,) 布朗运动布朗运动2,=+( ),0,0tBtW ttR 相关函数相关函数均值函数均值函数2,( )=Bmtt 2,22( , )=+min( , )BRs tsts t 2( ,) 布朗运动是一个高斯过程布朗运动是一个高
2、斯过程性质性质带漂移的布朗运动的民用航空发动机实时性能可带漂移的布朗运动的民用航空发动机实时性能可靠性预测,航空动力学报靠性预测,航空动力学报2009,Vol.1,No.12.任淑红任淑红采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物2( ,) 布朗运动是一个高斯过程布朗运动是一个高斯过程证明证明对任意自然数对任意自然数2,n 不是一般性,取不是一般性,取n个不同个不同的时间指标的时间指标010= ,nttt定义增量定义增量22-1,=-,=1,kkkttBBkn 则则2-1-1 ( ( -),( -)kk
3、kkkNt tt t221,1(,)=(,)nttnn nBB M采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物过程过程3:布朗桥:布朗桥=( )-(1)0,1brtBW t tWt则称则称 =,0,1brbrtBBt为从为从0到到0的布朗桥的布朗桥均值函数均值函数( )= ( )-(1)=0,0,1brBmtE W t tWt 相关函数相关函数(s, )=mins,t-st,0,1brBRts t性质,从性质,从0到到0的布朗桥是高斯过程的布朗桥是高斯过程采用PP管及配件:根据给水设计图配置好PP管及配件
4、,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例 设常数设常数,a bR定义从定义从a到到b的布朗桥的布朗桥:= +( - ) +0,1abbrttBab a t Bt证明证明 :01(1)= ,=ababBaBb(2) 从从a到到b的布朗桥是高斯过程的布朗桥是高斯过程,且且( )= +( - )0,1abmtab a tt( , )= (-( )(-(t)=min , -0,1abababababstCs tE BmsBms tstt采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接
5、部位干净无污物 布朗桥在研究经验分布函数中起着非常重要的作用。设X1,X2, Xn, 独立同分布,XnU(0,1) ,对0s0gettBBtR 均值函数均值函数相关函数相关函数22,( )= exp()=exp( +) ,02getBmtEBtt 22( - )( + )22(s, )=,0get st ssBRteees t股票价格服从几何布朗运动的证明股票价格服从几何布朗运动的证明谢惠扬采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物2,( )= exp()getBmtEB 2-+2-1=2xtxteed
6、xt2-2-+2-1=2xt xtteedxt22( -)()-+22-1=2x ttttteeedxt2=exp( +) ,02tt 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物+( )+(t)( + )+( )+( )(s, )=gesW stWs tW sW tBRtEeeEe( + )( )+( )=s tW sW teEe( + )( )+( )-( )+( )=s tW sW t W sW seEe( + )2( )( )-( )=s tW sW t W seEeE22( - )( + )22
7、=,0t st sseees t采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物过程过程5:反射布朗运动:反射布朗运动=( )0retBW tt 均值函数均值函数2( )= ( ) =,0reBtmtE W tt 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物( )= ( ) reBmtE W t2-+2-1=2xtxedxt2+-202=(-)2xttet2=,0tt 采用PP管及配件:根据给水设计图配置好PP管及配件,
8、用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物过程过程6:奥恩斯坦:奥恩斯坦-乌伦贝克过程乌伦贝克过程-=( ( )00outtBeWtt),其中其中2201( )=(-1)2tsttedse均值函数均值函数-( )= ( ( ) =0,0outBmtE e Wtt )- ( + )( , )=min (s), (t),0ous tBRs tes t相关函数相关函数采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物补充:补充:随机变量序列或随机过程随机变量序列或随机过程均方极
9、限均方极限均方连续均方连续均方可导均方可导均方可积均方可积采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物1均方极限的定义均方极限的定义定义定义设设,1,2,nX XH n如果如果则称则称Xn,n=1,2,均方收敛于均方收敛于X,或称或称 X 为为Xn,n=1,2,的均方极限,记为的均方极限,记为.nnlimXX2lim0nnE XX采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物2 均方连续均方连续设设X(t), tT T
10、 是二阶矩过程是二阶矩过程, , t0T, 若若00. .( )( )ttl i m X tX t则称则称X(t), t T在在t0处均方连续处均方连续 若对任意的若对任意的tT, X(t), tT在在t处均方连续处均方连续,则称则称 X(t), tT在在T上均方连续上均方连续. 或称或称 X(t), tT是是均方连续均方连续的的.1. 均方连续定义均方连续定义采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物3 均方导数均方导数1. 均方导数的均方导数的定义定义 设设( ),X t tT是二阶矩过程是二阶矩过
11、程,0,tT若均方若均方极限极限000()(). .tX ttX tl i mt 存在存在,则称此则称此极限为极限为( ),X t tT在在t0点的均方导数点的均方导数.0( )X t或或0( ).t tdX tdt这时称这时称( ),X t tT在在t0处均处均方可导方可导记为记为采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物 4 均方积分均方积分1. 均方积分的定义均方积分的定义设设X(t),ta,b是二阶矩过程,是二阶矩过程,f(t,u)是是a,b U上的普通函数,对区间上的普通函数,对区间a,b 任
12、一划分任一划分01natttb1,1,2, )kkktttkn(记1,1,2,kkkttntk任取()作和式1( , )( ),kknkkttfu XtH如果以下均方极限存在如果以下均方极限存在01. .( , )( )nkkkkl i mf t u X tt1maxkk nt 令采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物该均方极限值该均方极限值Y(u)称为称为 ( , )( ), , f t u X t ta b在在a,b上的上的均方积分均方积分.kt且此极限不且此极限不依懒于对依懒于对a,b的分法及
13、的分法及的取法的取法,则称则称 ( , )( ), , f t u X t ta b在在a,b上上均方可积均方可积. ( , )( ),baf t u X t dt记为记为即即 ( , )( ),( )baf t u X t dtuYUu 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物结论结论 设二阶矩过程设二阶矩过程X(t),tT均方可导均方可导.则则(1)导数过程导数过程的均值函数等于原过程的均值函数等于原过程( ),X t tT均值函数的导数,即均值函数的导数,即( )( ),;XXmtmt tT(
14、),X t tT(2) 导数过程导数过程( ),X t tT和原过程和原过程 ( ),X t tT的的互相关函数互相关函数( , )XXRs t等于原过程等于原过程 ( ),X t tT的的相关函数相关函数( , )XR s t关于关于s的偏导数,即的偏导数,即( , )( , ), ,;XXXRs tR s t s tTs采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物( , )( , ), ,;XXXRs tRs t s tTt(3)原过程原过程( ),X t tT( ),X t tT和导数过程和导数过程
15、的的互相关函数互相关函数( , )XXRs t等于原过程等于原过程( ),X t tT的的相关函数相关函数( , )XRs t关于关于t的偏导数,即的偏导数,即的的的的(4) 导数过程导数过程( ),X t tT相关函数相关函数( , )XRs t等于原过程等于原过程( ),X t tT相关函数相关函数( , )XRs t的二阶混合偏导数,即的二阶混合偏导数,即22( , )( , )( , ), ,.XXXRs tRs tRs t s tTs tt s 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物是参数
16、为是参数为定义定义 设设( ),0W t t 2的的Wiener过程过程.如果存在实随机过程以如果存在实随机过程以2()st 为其相关函数,为其相关函数,则称该过程为则称该过程为Wiener 过程过程( ),0W t t 的导数过的导数过程记为程记为( ),0.W t t从而从而2( , )(), ,0.WRs tst s t 称称参数为参数为2的的Wiener过程过程( ),0W t t 的导数过的导数过程程( ),0W t t为参数为为参数为2的的白噪声过程白噪声过程或或白噪声白噪声.七七.布朗运动的导数过程布朗运动的导数过程采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材
17、垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物tststsRsW, 0,),(2因为tststsu, 0, 1)(令:)(),(2tsutsRsW则有()()stDriu stcat再引进函数:)(),(22tstsRstW于是有)(),(22tstsRtsW同理采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物八八.布朗运动的积分过程布朗运动的积分过程0( )( ),( ).tS tW u duS t令称为积分布朗运动积分布朗运动是正态过程积分布朗运动是正态过程( )0E s 20(
18、, )()23SstssCs tt当采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物九:在某点被吸收的布朗运动九:在某点被吸收的布朗运动( )0.( ),( ), ( ),0.( )xxxTW txxW t tTZ txtTZ t txxZ t设为布朗运动首次击中 的时刻,令则是击中 后被吸收停留在 状态的布朗运动是混合型随机变量.采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物本章作业本章作业 1. 2. 3. 6. 8.采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物举例举例1.写出写出(,2 2) )布朗运动的均值向量和协方差矩阵。布朗运动的均值向量和协方差矩阵。2.2.计算标准布朗运动的二维分布函数及其密度函数。计算标准布朗运动的二维分布函数及其密度函数。11()()21221( )(2 )TxxnBexfB3)mNC BCTn m( )Y=XC(C),服从 维正态分布 ( C,3.写出写出W(1)+W(2)+W(3)+W(4)的分布的分布