《排列组合定序问题专题讲解ppt课件.ppt》由会员分享,可在线阅读,更多相关《排列组合定序问题专题讲解ppt课件.ppt(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例6 有有4名男生,名男生,3名女生。名女生。3名女生高矮互不等,名女生高矮互不等,将将7名学生排成一行,要求从左到右,女生从矮到高名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?排列,有多少种排法?顺序固定问题用顺序固定问题用“除法除法” 对于某几个元素顺序一定的排列问题,可先将对于某几个元素顺序一定的排列问题,
2、可先将这几个元素与其它元素一同进行排列,然后用总的这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数排列数除以这几个元素的全排列数.所以共有所以共有 种。种。 473377AAA分析:先在分析:先在7个位置上作全排列,有个位置上作全排列,有 种排法。其中种排法。其中3个女生因要求个女生因要求“从矮到高从矮到高”排,只有一种顺序故排,只有一种顺序故 只只对应一种排法,对应一种排法,33A77A回目录回目录采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物定序问题倍缩空位插入策略定序问题倍缩
3、空位插入策略例例4.74.7人排队人排队, ,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少不同的排法少不同的排法解:( (倍缩法倍缩法) )对于某几个元素顺序一定的排列对于某几个元素顺序一定的排列问题问题, ,可先把这几个元素与其他元素一起可先把这几个元素与其他元素一起进行排列进行排列, ,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间的全排列数素之间的全排列数, ,则共有不同排法种数则共有不同排法种数是:是: 7733AA(空位法空位法)设想有)设想有7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个
4、位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法。方法。 47A147A思考思考: :可以先让甲乙丙就坐吗可以先让甲乙丙就坐吗? ?回目录回目录采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物(插入法插入法) )先排甲乙丙三个人先排甲乙丙三个人, ,共有共有1 1种排法种排法, ,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4 4* *5 5* *6 6* *7 7定序问题可以用倍缩法,还可转化为占位插定序问题可以用倍缩法,还可转化为占位插空模型处理空模型处理练习题
5、1010人身高各不相等人身高各不相等, ,排成前后排,每排排成前后排,每排5 5人人, ,要要求从左至右身高逐渐增加,共有多少排法?求从左至右身高逐渐增加,共有多少排法?510C回目录回目录采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物例例 期中安排考试科目期中安排考试科目9 9门门, ,语文要在数学之前考语文要在数学之前考, ,有有多少种不同的安排顺序多少种不同的安排顺序? ?解解 不加任何限制条件不加任何限制条件, ,整个排法有整个排法有 种种,“,“语文安排语文安排在数学之前考在数学之前考”, ,与与
6、“数学安排在语文之前考数学安排在语文之前考”的排法的排法是相等的是相等的, ,所以语文安排在数学之前考的排法共有所以语文安排在数学之前考的排法共有 种种. .99A9921A结论结论 对等法对等法: :在有些题目中在有些题目中, ,它的限制条件的肯定与它的限制条件的肯定与否定是对等的否定是对等的, ,各占全体的二分之一各占全体的二分之一. .在求解中只要求在求解中只要求出全体出全体, ,就可以得到所求就可以得到所求. .分析分析 对于任何一个排列问题对于任何一个排列问题, ,就其中的两个元素来讲就其中的两个元素来讲的话的话, ,他们的排列顺序只有两种情况他们的排列顺序只有两种情况, ,并且在整个排列并且在整个排列中中, ,他们出现的机会是均等的他们出现的机会是均等的, ,因此要求其中的某一种因此要求其中的某一种情况情况, ,能够得到全体能够得到全体, ,那么问题就可以解决了那么问题就可以解决了. .并且也避并且也避免了问题的复杂性免了问题的复杂性. .回目录回目录