《高二数学知识点梳理最新分享例文.docx》由会员分享,可在线阅读,更多相关《高二数学知识点梳理最新分享例文.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学知识点梳理最新分享高二数学学问点梳理最新五篇共享1一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。四、三角函数(46课时,17个)1
2、.角的概念的推广;2.弧度制;3.随意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。五、平面对量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面对量的坐标表示;5.线段的定比分点;6.平面对量的数量积;7.平面两点间的距离;8.平移。六、不等式(22课时,
3、5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含肯定值的不等式。七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简洁线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简洁几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简洁几何性质;6.抛物线及其
4、标准方程;7.抛物线的简洁几何性质。九、直线、平面、简洁何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离
5、;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两特性质;7.二项式定理;8.二项绽开式的性质。十一、概率(12课时,5个)1.随机事务的概率;2.等可能事务的概率;3.互斥事务有一个发生的概率;4.相互独立事务同时发生的概率;5.独立重复试验。选修(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估
6、计;5.正态分布;6.线性回来。十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数探讨函数的单调性和极值;8.函数的值和最小值。十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。高二数学学问点梳理最新五篇共享21、圆的定义平面内到肯定点的距离等于定长的点的集合叫
7、圆,定点为圆心,定长为圆的半径。2、圆的方程(x-a)2+(y-b)2=r2(1)标准方程,圆心(a,b),半径为r;(2)求圆方程的.方法:一般都采纳待定系数法:先设后求。确定一个圆须要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,须要求出D,E,F;另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系直线与圆的位置关系有相离,相切,相交三种状况:(1)设直线,圆,圆心到l的距离为,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:
8、圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2练习题:2.若圆(x-a)2+(y-b)2=r2过原点,则()A.a2-b2=0B.a2+b2=r2C.a2+b2+r2=0D.a=0,b=0选B.因为圆过原点,所以(0,0)满意方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.高二数学学问点梳理最新五篇共享3圆的方程1、圆的定义:平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当
9、时,表示一个点;当时,方程不表示任何图形。(3)求圆方程的方法:一般都采纳待定系数法:先设后求。确定一个圆须要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,须要求出D,E,F;另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种状况:(1)设直线,圆,圆心到l的距离为,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线
10、方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。留意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的协助线一般为连圆心与切线或者连圆心与弦中点高二数学学问点梳理最新五篇共享41、圆的定
11、义:平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。(3)求圆方程的方法:一般都采纳待定系数法:先设后求。确定一个圆须要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,须要求出D,E,F;另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种状况:(1)设直线,圆,圆心到l的距离为,则有(2)过圆外一点的切线:k不存在,验证是否成
12、立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当
13、时,为同心圆。留意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的协助线一般为连圆心与切线或者连圆心与弦中点高二数学学问点梳理最新五篇共享51.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.解一元高次不等式;解分式不等式;解无理不等式;解指数不等式;解对数不等式;解带肯定值的不等式;解不等式组.2.解不等式时应特殊留意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)留意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|(6)|f(x)|g(x)与f(x)g(x)或f(x)1时,af(x)ag(x)与f(x)g(x)同解,当0ag(x)与f(x)