《高二数学知识点梳理最新.docx》由会员分享,可在线阅读,更多相关《高二数学知识点梳理最新.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学知识点梳理高二数学学问点梳理1等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。面积公式若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:S=ch/2=c2/4。等腰直角三角形是一种特别的三角形,具有全部三角形的性质:稳定性,两直角边相等直角边夹始终角锐角45,斜边上中线角平分线垂线三线合一。反正弦函数的导数:正弦函数y=sinx在-/2,/2上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在-/2,/
2、2区间内。定义域-1,1,值域-/2,/2。反函数求导方法若F(X),G(X)互为反函数,则:F(X)_(X)=1E.G.:y=arcsin_sinyy_=1(arcsinx)_siny)=1y=1/(siny)=1/(cosy)=1/根号(1-sin2y)=1/根号(1-x2)其余依此类推高二数学学问点梳理21.总体和样本在统计学中,把探讨对象的全体叫做总体.把每个探讨对象叫做个体.把总体中个体的总数叫做总体容量.为了探讨总体的有关性质,一般从总体中随机抽取一部分:探讨,我们称它为样本.其中个体的个数称为样本容量.2.简洁随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全
3、随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无肯定的关联性和排斥性。简洁随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。3.简洁随机抽样常用的方法:抽签法;随机数表法;计算机模拟法;运用统计软件干脆抽取。在简洁随机抽样的样本容量设计中,主要考虑:总体变异状况;允许误差范围;概率保证程度。4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)打算抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜爱的体育活动状况。5.随机数表法:例:利用随机数表
4、在所在的班级中抽取10位同学参与某项活动。系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本采纳简洁随机抽样的方法抽取。K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于探讨的变量来说,应是随机的,即不存在某种与探讨变量相关的规则分布。可以在调查允许的条件下,从不同的样本起先抽样,对比几次样本的特点。假如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简洁。更为重要的是
5、,假如有某种与调查指标相关的协助变量可供运用,总体单元按协助变量的大小依次排队的话,运用系统抽样可以大大提高估计精度。分层抽样1.分层抽样(类型抽样):先将总体中的全部单位根据某种特征或标记(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采纳简洁随机抽样或系用抽样的方法抽取一个子样本,最终,将这些子样本合起来构成总体的样本。两种方法:1.先以分层变量将总体划分为若干层,再根据各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的依次整齐排列,最终用系统抽样的方法抽取样本。2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同
6、的子总体中的样本分别代表该子总体,全部的样本进而代表总体。分层标准:(1)以调查所要分析和探讨的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。(3)以那些有明显分层区分的变量作为分层变量。3.分层的比例问题:(1)按比例分层抽样:依据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会特别少,此时采纳该方法,主要是便于对不同层次的子总体进行特地探讨或进行相互比较。假如要用样本资料推断总体时,则须要先对各层的数据资料进行加权处理,调整样本中各层的
7、比例,使数据复原到总体中各层实际的比例结构。用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,假如抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不行避开的。虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特殊是当样本量很大时,它们的确反映了总体的信息。4.(1)假如把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)假如把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的
8、影响,区间的应用;“去掉一个分,去掉一个最低分”中的科学道理两个变量的线性相关1、概念:(1)回来直线方程(2)回来系数2.最小二乘法3.直线回来方程的应用(1)描述两变量之间的依存关系;利用直线回来方程即可定量描述两个变量间依存的数量关系(2)利用回来方程进行预料;把预报因子(即自变量x)代入回来方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。(3)利用回来方程进行统计限制规定Y值的改变,通过限制x的范围来实现统计限制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回来方程,即可通过限制汽车流量来限制空气中NO2的浓度。4.应用直线回来的留意事项(1)做回来分析要有实际意
9、义;(2)回来分析前,先作出散点图;(3)回来直线不要外延。高二数学学问点梳理3一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是00时,抛物线向上开口;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。=b2-4ac=0时,抛物线与x轴有1个交点。=b2-4ac0)上一点P(x0,y0)到焦点F?p2,0的距离|PF|=x0+p2.求抛物线方程的方法:(1)定义法:依据条件确定动点满意的几何特征,从而确定p的值,得到抛物线的标准方程.(2)待定
10、系数法:依据条件设出标准方程,再确定参数p的值,这里要留意抛物线标准方程有四种形式.从简洁化角度动身,焦点在x轴的,设为y2=ax(a0),焦点在y轴的,设为x2=by(b0).高二数学学问点梳理71.平面对量的数量积平面对量数量积的定义已知两个非零向量a和b,它们的夹角为,把数量|a|b|cos 叫做a和b的数量积(或内积),记作ab.即ab=|a|b|cos ,规定0a=0.2.向量数量积的运算律(1)ab=ba(2)(a)b=(ab)=a(b)(3)(a+b)c=ac+bc探究 依据数量积的运算律,推断下列结论是否成立.(1)ab=ac,则b=c吗?(2)(ab)c=a(bc)吗?提示:(1)不肯定,a=0时不成立,另外a0时,ab=ac.由数量积概念可知b与c不能确定;(2)(ab)c=a(bc)不肯定相等.(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等.