高一数学知识点最新归纳汇总.docx

上传人:ylj18****41534 文档编号:28954377 上传时间:2022-07-29 格式:DOCX 页数:14 大小:18.34KB
返回 下载 相关 举报
高一数学知识点最新归纳汇总.docx_第1页
第1页 / 共14页
高一数学知识点最新归纳汇总.docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《高一数学知识点最新归纳汇总.docx》由会员分享,可在线阅读,更多相关《高一数学知识点最新归纳汇总.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一数学知识点最新归纳高一数学学问点最新归纳11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为困难,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相

2、当于xa,b时,求g(x)的值域(即f(x)的定义域);探讨函数的问题肯定要留意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上随意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上随意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b

3、-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函

4、数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解kD(D为f(x)的值域);af(x)恒成立af(x)max,;af(x)恒成立af(x)min;(1)(a0,a1,b0,nR+);(2)logaN=(a0,a1,b0,b1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a1,N0);6.推断对应是否为映射时,抓住两点:(1)A中元素必需都有象且;(2)B中元素不肯定都有原象,

5、并且A中不同元素在B中可以有相同的象;7.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。8.对于反函数,应驾驭以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA);9.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系

6、;10.依据单调性利用一次函数在区间上的保号性可解决求一类参数的范围问题;高一数学学问点最新归纳21.数列的函数理解:数列是一种特别的函数。其特别性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N或其有限子集1,2,3,n的函数,其中的1,2,3,n不能省略。用函数的观点相识数列是重要的思想方法,一般状况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不肯定有解析式,同样数列也并非都有通项公式。2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表

7、示,这个公式就叫做这个数列的通项公式。数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不。(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,.)。3.递推公式:假如数列an的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。数列递推公式特点:(1)有些数列的递推公式可以有不同形式,即不。(2)有些数列没有递推公式。有递推公式不肯定有通项公式。注:数列中的项必需是数,它可以是实数,也可以是复数。高一数学学问点最新归纳3两个平面的位置关系:(1)两个平面相互平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平

8、行没有公共点;两个平面相交有一条公共直线。a、平行两个平面平行的判定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。(2)二面角:从一条直线动身的两个半平面所组成的图形叫做二面角。二面角的取值范围为0,180(3)二面角的棱:这一条直线叫做二面角的棱。(4)二面角的面:这两个半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上随意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角

9、叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。两平面垂直两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面相互垂直。记为两平面垂直的判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直两个平面垂直的性质定理:假如两个平面相互垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。二面角求法:干脆法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(留意求出的角与所须要求的角之间的等补关系)棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。棱锥的性质:(1)侧棱交于一点。

10、侧面都是三角形(2)平行于底面的截面与底面是相像的多边形。且其面积比等于截得的棱锥的.高与远棱锥高的比的平方正棱锥正棱锥的定义:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。(3)多个特别的直角三角形a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。b、四面体中有三对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。集合集合具有某种特定性质的事物的总体。这里的“事

11、物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急。2、数学名词。一组具有某种共同性质的数学元素:有理数的。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,特地探讨集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的全部领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为

12、一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:假如集合A的全部元素同时都是集合B的元素,则A称作是B的子集,写作A B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。全部男人的集合是全部人的集合的真子

13、集。)2高一函数学问点归纳(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区分,映射是一种特别的对应,而函数又是一种特别的映射.2、对于函数的概念,应留意如下几点:(1)驾驭构成函数的三要素,会推断两个函数是否为同一函数.(2)驾驭三种表示法列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特殊是会求分段函数的解析式.(3)假如y=f(u),u=g(x),那么y=fg(x)叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y

14、);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.留意:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.熟识的应用,求f-1(x0)的值,合理利用这个结论,可以避开求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不行分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必需是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.

15、如:分式的分母不得为零;偶次方根的被开方数不小于零;对数函数的真数必需大于零;指数函数和对数函数的底数必需大于零且不等于1;三角函数中的正切函数y=tanx(xR,且kZ),余切函数y=cotx(xR,xk,kZ)等.应留意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是a,b,求fg(x)的定义域是指满意ag(x)b的x的取值范围,而已知fg(x)的定义域a,b指的是xa,b,此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种状况(

16、1)依据某实际问题需建立一种函数关系时,必需引入合适的变量,依据数学的有关学问寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采纳待定系数法.比如函数是一次函数,可设f(x)=ax+b(a0),其中a,b为待定系数,依据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数fg(x)的表达式时,可用换元法求函数f(x)的表达式,这时必需求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满意某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必需依据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数

17、的值域与最值1、函数的值域取决于定义域和对应法则,不论采纳何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)干脆法:亦称视察法,对于结构较为简洁的函数,可由函数的解析式应用不等式的性质,干脆视察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的困难函数转化成另一种简洁函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a0)的函数值域可采纳此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域

18、问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+ba,b(0,+)可以求某些函数的值域,不过应留意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采纳单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区分和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,

19、假如在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16,最大值是16,无最小值.再如函数的值域是(-,-22,+),但此函数无最大值和最小值,只有在变更函数定义域后,如x0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数学问求解实际问题上,从文字表述上经常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特殊关注实际意义对自变量的制约,以便能正确求得最值.

20、(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),假如对于函数定义域内的随意一个x,都有f(-x)=-f(x)(或f(-x)=f(x),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要留意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是推断函数奇偶性的主要依据。为了便于推断函数的奇偶性,有时须要将函数化简或应用定义的等价形式。高一数学学问点最新归纳4定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。范围:倾斜角的取值范围是00时(0,90)k0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。=b2-4ac=0时,抛物线与x轴有1个交点。=b2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁