《高三上册数学知识点归纳汇编.docx》由会员分享,可在线阅读,更多相关《高三上册数学知识点归纳汇编.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高三上册数学知识点归纳高三上册数学学问点归纳1数列是中学数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题常常是综合题,常常把数列学问和指数函数、对数函数和不等式的学问综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探究性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类探讨等重要思想,以及配方法、换元法、待定系数法等基本数学方法。近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关学问,其中有等差数列与等比数列的概念
2、、性质、通项公式及求和公式。(2)数列与其它学问的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最终一题难度较大。1.在驾驭等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统驾驭解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,敏捷地运用数列学问和方法解决数学和实际生活中的有关问题;2.在解决综合题和探究性问题实践中加深对基础学问、基本技能和基本数学思想方法的相识,
3、沟通各类学问的联系,形成更完整的学问网络,提高分析问题和解决问题的实力,进一步培育学生阅读理解和创新实力,综合运用数学思想方法分析问题与解决问题的实力。高三上册数学学问点归纳21.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为困难,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的
4、定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);探讨函数的问题肯定要留意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的.对称性)(1)证明函数图像的对称性,即证明图像上随意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上随意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+
5、a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于
6、直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解kD(D为f(x)的值域);6.af(x)恒成立af(x)max,;af(x)恒成立af(x)min;7.(1)(a0,a1,b0,nR+);(2)logaN=(a0,a1,b0,b1);(3)logab的符号由口诀“同正异负”记忆
7、;(4)alogaN=N(a0,a1,N0);8.推断对应是否为映射时,抓住两点:(1)A中元素必需都有象且;(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象;9.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。10.对于反函数,应驾驭以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(
8、xA);11.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;12.依据单调性利用一次函数在区间上的保号性可解决求一类参数的范围问题;13.恒成立问题的处理方法(1)分别参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;高三上册数学学问点归纳3一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中xk+/2;6、假如函数是由实际意义确定的解析式,应依据自变量的实际意义
9、确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、干脆法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。2、若f(x)为增(减)函数,则-f(x)为减(增)函数。3、若f(x)与g(x)的单调性相同,则fg(x)是增函数;若f(x)与g(x)的单调性不
10、同,则fg(x)是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、假如一个奇函数在x=0处有定义,则f(0)=0,假如一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2f(x)+f(-x)+1/2f(x)+f(-x),该式的特点是:右端为一个奇函数和一个偶函数的和。