期望计算公式.doc

上传人:知****量 文档编号:28243047 上传时间:2022-07-26 格式:DOC 页数:3 大小:57KB
返回 下载 相关 举报
期望计算公式.doc_第1页
第1页 / 共3页
期望计算公式.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《期望计算公式.doc》由会员分享,可在线阅读,更多相关《期望计算公式.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

离散型如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量.离散型随机变量的一切可能的取值与对应的概率乘积之和称为该离散型随机变量的数学期望2(若该求和绝对收敛),记为。它是简单算术平均的一种推广,类似加权平均。公式离散型随机变量X的取值,为X对应取值的概率,可理解为数据出现的频率,则:定理设Y是随机变量X的函数:(是连续函数)它的分布律为若绝对收敛,则有:连续型设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望完全由随机变量X的概率分布所确定。若X服从某一分布,也称是这一分布的数学期望。定理若随机变量Y符合函数,且绝对收敛,则有:该定理的意义在于:我们求时不需要算出Y的分布律或者概率密度,只要利用X的分布律或概率密度即可。上述定理还可以推广到两个或以上随机变量的函数情况。设Z是随机变量X、Y的函数(g是连续函数),Z是一个一维随机变量,二维随机变量(X,Y)的概率密度为,则有:性质设C为一个常数,X和Y是两个随机变量.以下是数学期望的重要性质:1.2。3.4.当X和Y相互独立时,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁