难点详解京改版八年级数学下册第十五章四边形达标测试试卷.docx

上传人:知****量 文档编号:28227462 上传时间:2022-07-26 格式:DOCX 页数:30 大小:1MB
返回 下载 相关 举报
难点详解京改版八年级数学下册第十五章四边形达标测试试卷.docx_第1页
第1页 / 共30页
难点详解京改版八年级数学下册第十五章四边形达标测试试卷.docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《难点详解京改版八年级数学下册第十五章四边形达标测试试卷.docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十五章四边形达标测试试卷.docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80,那么CDE的度数为( )A20B25

2、C30D352、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( )A1,1,2,B1,1,1C1,2,2D1,1,63、下面图案中既是轴对称图形又是中心对称图形的是()ABCD4、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D1405、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存

3、在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或26、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定7、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD548、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD9、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v

4、的值为()A2B4C4或D2或10、如图,在六边形中,若,则( )A180B240C270D360第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _2、如图,点E,F在正方形ABCD的对角线AC上,AC10,AECF3,则四边形BFDE的面积为 _3、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,则四边形的面积为_4、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于

5、点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _5、正方形的一条对角线长为4,则这个正方形面积是_三、解答题(5小题,每小题10分,共计50分)1、(3)点P为AC上一动点,则PE+PF最小值为2、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且(1)求所在直线的解析式;(2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为_3、如图1,在平面直角坐标系中,直线l1:ykx+b(k0)与x轴交于点A,与

6、y轴交于点B(0,6),直线l2与x轴交于点C,与直线l1交于D(m,3),OC2OA,tanBAO(1)求直线l2的解析式(2)在线段DC上是否存在点P,使DAP的面积为?若存在,求出点P的坐标,若不存在,请说明理由(3)如图2,连接OD,将ODB沿直线AB翻折得到ODB若点M为直线AB上一动点,在平面内是否存在点N,使得以B、O、M、N为顶点的四边形为菱形,若存在,直接写出N的坐标,若不存在,请说明理由4、如图,ABC中,点D是边AC的中点,过D作直线PQBC,BCA的平分线交直线PQ于点E,点G是ABC的边BC延长线上的点,ACG的平分线交直线PQ于点F求证:四边形AECF是矩形5、如图

7、,已知ACB中,ACB90,E是AB的中点,连接EC,过点A作ADEC,过点C作CDEA,AD与CD交于点D(1)求证:四边形ADCE是菱形;(2)若AB8,DAE60,则ACB的面积为 (直接填空)-参考答案-一、单选题1、C【分析】依题意得出AE=AB=AD,ADE=50,又因为B=80故可推出ADC=80,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80,AE=AB=AD,在三角形AED中,AE=AD,DAE=80,ADE=50,又B=80,ADC=80,CDE=ADC-ADE=30故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质

8、,解题关键是利用等腰三角形的性质求得ADE的度数2、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+14,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键3、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形,故此选项不合题意;B是轴对称图形,不是

9、中心对称图形,故此选项不合题意;C不是轴对称图形,是中心对称图形,故此选项不合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意故选:D【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键4、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案

10、.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.5、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=9

11、0,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用6、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它

12、不相邻的两个内角的和;四边形的内角和等于360是解题的关键7、C【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键8、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+

13、BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用9、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm

14、,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:42=2s,v的值为:42=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,52=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键10、C【分析】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键二、填空题1、10【分析】根据正方形

15、的性质,结合题意易求证,即可利用“ASA”证明,得出最后根据勾股定理可求出,即正方形的面积为10【详解】四边形ABCD是正方形,根据题意可知:,在和中,在中,正方形ABCD的面积是10故答案为:10【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键2、20【分析】连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,ACBD,由即可求解【详解】解:如图,连接BD,交AC于O,四边形ABCD是正方形,AC10,ACBD10,ACBD,OAOCOBOD5,AECF3,EOFO2,EF=EO+FO=4, 故答案为:20【点睛】本题主要考查了正方形

16、的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键3、4【分析】过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的【详解】如图,过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,四边形ABCD的对角线交点为O,OA=OC,ABC=90,AB=BC,OGBC,OHAB,四边形OGBH是矩形,OG=OH=,GOH=90,=4,FOH+FOG=90,EOG+FOG=90,FOH=EOG,OGE=OHF=90,OG=OH,OGEOHF,=4,故答案为:4【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算

17、面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键4、1【分析】根据基本作图,得到EC是BCD的平分线,由ABCD,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键5、8【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解

18、边长的平方,即为正方形的面积【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理解题的关键在于求解正方形的边长三、解答题1、见解析【分析】(1)根据折叠的性质可得:1=2,再由矩形的性质,可得2=3,从而得到1=3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得ECPBCP,从而得到PE=PB,进而得到当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解【详解】(1)解:ACF是等腰三角形,理由如下:如图,由折叠可知,1=2,四边形ABCD是

19、矩形,ABCD,2=3,1=3,AF=CF,ACF是等腰三角形;(2)四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,D=90,设FD=x,则AF=CF=8-x,在RtAFD中,根据勾股定理得AD2+DF2=AF2,42+x2=(8-x)2,解得x=3 ,即DF=3,CF=8-3=5,;(3)如图,连接PB,根据折叠得:CE=CB,ECP=BCP,CP=CP,ECPBCP,PE=PB,PE+PF=PE+PB,当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,BCF=90, ,即PE+PF最小值为 【点睛】本题主要考查了矩形与折

20、叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键2、(1);(2)10;(3)(4,2)【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;(2)首先由折叠的性质得到AE=CE,然后在RtOCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可【详解】解:(1)OA=2CO,设OC=x,则OA=2x在RtAOC中,由勾股定理可得OC2+OA2=AC2,x2+(2x)2=(4)2 解得

21、x=4(x=4舍去)OC=4,OA=8A(8,0),C(0,4)设直线AC解析式为y=kx+b,解得,直线AC解析式为y=x+4;(2)由折叠得AE=CE,设AE=CE=y,则OE=8y,在RtOCE中,由勾股定理可得OE2+OC2=CE2,(8y)2+42=y2解得y=5AE=CE=5 在矩形OABC中,BCOA,CFE=AEF,由折叠得AEF=CEF,CFE=CEFCF=CE=5 SCEF=CFOC=54=10 即重叠部分的面积为10;(3)矩形是一个中心对称图形,对称中心是对角线的交点,任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即M点为AC的中

22、点,A(8,0),C(0,4),M点坐标为(4,2)【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式3、(1);(2)(,2);(3)N点坐标为(,)、(,)、(0,0)或(,6)【分析】(1)由y轴截距以及正切值,可求出,则 A点坐标为(,0),因为OC2OA所以C点坐标为(,0 ),将D(m,3)代入,得D点坐标为( ,3),再将D(,3),C(,0 )代入,求得(2)设P点坐标为(a,),由题意可知DAP为,DAP的高为A点到直线CD的距离,过 A点做DC平行线交y轴于点E,由可知 ,将A(,0

23、)代入,解得 ,故两线间的距离为,DAP的高为,由三角形面积= 底高,有2,故有,进而即可求解;(3)如图所示,共有4个点满足条件,证明见解析【详解】(1)B(0,6),tanBAO令y=0,得A点坐标为(,0)OC2OAC点坐标为(,0)将D(m,3)代入D点坐标为(,3)将D(,3),C(,0)代入有得(2)设P点坐标为(a,),过A点做DC平行线交y轴于点EAE/DC将A(,0)代入得b=2故和间的距离为,即DAP的高为由三角形面积=底高有有2故有化简得解得a=0(舍去)或a=,故P点坐标为(,2)(3)如图所示,可知BO=6,在B点上方截取BM1=6,过M1做BO平行线,过O做BM1平

24、行线,两平行线相交于N1由作图步骤可知BON1M1为菱形,由菱形性质可得N1坐标为(,)如图所示,可知BO=6,在B点下方截取BM2=6,过M2做BO平行线,过O做BM2平行线,两平行线相交于N2由作图步骤可知BON2M2为菱形,由菱形性质可得N2坐标为(,)如图所示,可知BO=6,在B点下方截取BN3=6,过N3做BO平行线,过O做BN3平行线,两平行线相交于M3由作图步骤可知B N3M3O为菱形,由菱形性质可得N3坐标为(0,0)如图所示,可知BO=6,令BO做菱形其中一条对角线,过O做x轴平行线交直线AB于点M4,过B点做OM4平行线,过O点做直线AB平行线,两平行线相交于N4由作图步骤

25、可知B M4ON4为菱形,由菱形性质可得N4坐标为(,6)综上所述N点坐标为(,)、(,)、(0,0)或(,6)【点睛】本题考查了一次函数的图象及其性质,菱形的判定,熟练掌握并应用菱形的性质是解第三问的关键:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形具有平行四边形的一切性质.菱形是轴对称图形,对称轴是两条对角线所在的直线.利用菱形的性质可证线段相等,角相等4、见解析【分析】先根据平行线的性质得到DECBCE,DFCGCF,再由角平分线的定义得到,则DECDCE,DFCDCF,推出DEDC,DFDC,则DEDF,再由ADCD,即可证明四边形AECF是平行四边

26、形,再由ECFDCE+DCF,即可得证【详解】证明:PQBC,DECBCE,DFCGCF,CE平分BCA,CF平分ACG,DECDCE,DFCDCF,DEDC,DFDC,DEDF,点D是边AC的中点,ADCD,四边形AECF是平行四边形,BCA+ACG180,ECFDCE+DCF,平行四边形AECF是矩形【点睛】本题主要考查了矩形的判定,平行线的性质,角平分线的定义,等腰三角形的性质与判定,等等,熟练掌握矩形的判定条件是解题的关键5、(1)见解析;(2)【分析】(1)由AD/CE,CD/AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;(2)由菱形的性质可得当DAE=60时,CAE=30,可求BC,再根据勾股定理求出AC,最后求面积即可【详解】解:(1),四边形是平行四边形,是的中点,四边形是菱形;(2)四边形是菱形,在Rt中, 【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁