《难点详解北师大版八年级数学下册第六章平行四边形同步训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第六章平行四边形同步训练试题(含详细解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是
2、( )A12B15C18D242、正五边形的外角和是( )ABCD3、从一个多边形的顶点出发,可以作2条对角线,则这个多边形的内角和是( )ABCD4、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD5、如图,在RtABC中,ACB90,BAC30,BC2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连CE,则CE的长不可能是()A1.2B2.05C2.7D3.16、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A
3、4:1B5:1C6:1D7:17、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定8、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14409、一个n边形的所有内角之和是900,则n的值是( )A5B7C9D1010、n 边形的每个外角都为 15,则边数 n 为( )A20B22C24D26第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,等边ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交AB于点M当边AB恰平分线段ON时,则=_2
4、、如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为 _3、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm4、若一个n边形的每个内角都等于135,则该n边形的边数是_5、一个正多边形的每个内角都等于,那么它的内角和是_三、解答题(5小题,每小题10分,共计50分)1、如图1,在RtABC中,BAC90,AB4,以AB为边在AB上方作等边ABD,以BC为边在BC右侧作等边CBE,连结DE(1)当AC5时,求BE的长(2)求证:BDDE(3)如图2,点C与点C关于直线AD对
5、称,连结CE求CE的长连结CD,当CDE是以CE为腰的等腰三角形时,写出所有满足条件的AC长: (直接写出答案)2、一个多边形,除一个内角外,其余各内角之和等于2012,求这个内角的度数及多边形的边数3、如图,是的中位线,延长到,使,连接求证:4、如果一个多边形的内角和与外角和恰好相等,那么这个多边形有多少条对角线?5、一个多边形的内角和是外角和的2倍,求这个多边形的边数-参考答案-一、单选题1、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)3
6、6,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质2、B【分析】根据多边形的外角和等于360,即可求解【详解】解:任意多边形的外角和都是360,故正五边形的外角和的度数为360故选:B【点睛】本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是3603、D【分析】根据从多边形的一个顶
7、点可以作对角线的条数公式(n3)求出边数,然后根据多边形的内角和公式(n2)180列式进行计算即可得解【详解】解:多边形从一个顶点出发可引出2条对角线,n3=2,解得:n=5,内角和=(52)180=540故选:D【点睛】本题考查了多边形的内角和公式能够利用多边形的对角线的公式,求出多边形的边数是解题的关键4、B【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,
8、由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF ,
9、 故错误; 设FEC=x,则FCE=x,DCF=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点5、D【分析】取AB的中点F,得到BCF是等边三角形,利用三角形中位线定理推出EF=BD=1,再分类讨论求得,即可求解【详解】解:取AB的中点F,连接EF、CF,BAC=30,BC=2,AB=2BC=4,BF=FA=BC=CF=2,ABC=60,BCF是等边三角形,E、F分
10、别是AD、AB的中点,EF=BD=1,如图:当C、E、F共线时CE有最大值,最大值为CF+EF=3;如图,当C、E、F共线时CE有最小值,最小值为CF-EF=1;,观察各选项,只有选项D符合题意,故选:D【点睛】本题考查了等边三角形的判定和性质,三角形中位线定理,分类讨论求得CE的取值范围是解题的关键6、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补7、B【分析】设BE与DF交于点M,BE与AC交于点N,
11、根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键8、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.
12、9、B【分析】根据n边形内角和公式即可得到,由此进行求解即可【详解】解:一个n边形的所有内角之和是900,故选B【点睛】本题主要考查了多边形内角和公式,解题的关键在于能够熟练掌握多边形内角和公式10、C【分析】根据多边形的外角和等于360度得到15n360,然后解方程即可【详解】解:n边形的每个外角都为15,15n360,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键二、填空题1、【分析】过点作交于点,可得为的中位线,为的中位线,利用三角形中位线定理和等边三角形的性质得到:,即可求解【详解】解:过点作交于点,如下图:B、C的坐标分别为(2,0),(6,0
13、),边AB恰平分线段ON点是的中点,是的中位线,又为等边三角形,故答案为【点睛】本题考查了三角形中位线定理,等边三角形的性质以及坐标与图形的性质,解题的关键是正确作出辅助线,构造出三角形的中位线2、(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可【详解】解:平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),由A,B坐标可得B向右平移3个单位,向上平移3个单位,可以得到点A点D可由点C向右平移3个单位,向上平移3个单位得到,点C坐标为(5,3)则点D坐标为(8,6);故答案为:(8,6)【点睛】此题考查了坐标与图形,涉及
14、了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键3、24【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半4、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:一个n边形的每个内角都等于135,则这个n边形的每个外角等于该n边形的边数是故答案为:【点睛】本题
15、考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键5、720【分析】先求出这个多边形的每一个外角的度数,再用360除以每一个外角的度数即可得到边数,然后根据多边形内角和公式进行求解即可【详解】解:正多边形的各个内角都等于120,正多边形的每一个外角都等于180-120=60,边数为36060=6正多边形的内角和= 故答案为:720【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键三、解答题1、(1);(2)见解析;(3)4;4或【分析】(1)证明BACBDE(SAS),利用全等三角形的性质求解即可;(2)证明BACBDE(SAS),利用全等三角形的性质可得BA
16、CBDE90,即可得出结论;(3)连接AC,由(2)知BACBDE(SAS),可得ACDE,BACBDE90,则ADE60+90150,求出CADBACBAD906030,根据对称的性质得DACDAC30,ACDEAC,得出ADE+DAC180,可得DEAC,可得四边形ACED是平行四边形,即可得CEADAB4;分两种情况:CEDE时,CECD时,根据等腰三角形的性质即可求解【详解】解:(1)ABD,CBE都是等边三角形,ABDCBE60,ABDB,BCBE,ABC+CBDDBE+CBD,ABCDBE,BACBDE(SAS),BACBDE90,BEBC在RtABC中,AB4,AC5,;(2)证
17、明:ABD,CBE都是等边三角形,ABDCBE60,ABDB,BCBE,ABC+CBDDBE+CBD,ABCDBE,BACBDE(SAS),BACBDE90,BDDE;(3)连接AC,由(2)知BACBDE(SAS),ACDE,BACBDE90,ADE60+90150,CADBACBAD906030,由对称的性质得DACDAC30,ACDEAC,ADE+DAC180,DEAC,四边形ACED是平行四边形,CEADAB4;分两种情况:CEDE时,CE4,四边形ACED是平行四边形,CEDEAC4,由对称的性质得ACAC4,CECD时,作CFDE于F,CECD,CFDE,DFEF,CFE90,四边
18、形ACED是平行四边形,CEFDAC30,综上,AC长为4或故答案为:4或【点睛】本题属于几何变换综合题,考查了等边三角形的性质,对称的性质,全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,注意分类讨论思想的运用2、这个内角的度数是148,边数为14【分析】根据多边形内角和定理:且为整数),可得:多边形的内角和一定是的倍数,而多边形的内角一定大于,并且小于,用2012除以180,根据商和余数的情况,求出这个多边形的边数与2的差是多少,即可求出这个多边形的边数,再用这个多边形的内角和减去,求出这个内角的度数是多少即可【详解】解:,这个多边形的边数与2的差是
19、12,这个多边形的边数是:,这个内角的度数是:答:这个内角的度数为,多边形的边数为14【点睛】本题主要考查了多边形的内角和,解题的关键是要明确多边形内角和定理:且为整数)3、见解析【分析】由已知条件可得DF=AB及DFAB,从而可得四边形ABFD为平行四边形,则问题解决【详解】是的中位线DEAB,AD=DCDFABEF=DEDF=AB四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键当然本题也可以用三角形全等的知识来解决4、2条【分析】先根据内角和公式与外角和等于360求出为四边形,再根据对角线的特点即可求解【详解】解:设这个多边形有n条边,那么解得n=4 所以这个多边形是四边形,它有2条对角线【点睛】此题主要考查多边形的内角和、外角和及对角线,解题的关键是熟知n边形的内角和为5、这个多边形的边数是6【分析】根据多边形的外角和为360,内角和公式为:(n-2)180,由题意可知:内角和=2外角和,设出未知数,可得到方程,解方程即可【详解】解:设这个多边形是n边形,由题意得:(n-2)180=3602,解得:n=6这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,解一元一次方程,做题的关键是正确把握内角和公式为:(n-2)180,外角和为360