《难点详解北师大版八年级数学下册第六章平行四边形定向测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第六章平行四边形定向测评试题(含详细解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14402、下列多边形中
2、,内角和为540的是( )ABCD3、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D1404、如图,D、E分别为ABC的边AB、AC的中点连接DE,过点B作BF平分ABC,交DE于点F若EF4,AD7,则BC的长为()A22B20C18D165、平行四边形中,则的度数是( )ABCD6、若一个正多边形每个外角都是36,则这个正多边形的边数为()A8B9C10D117、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的
3、中点,BD12,则DOE的周长是( )A12B15C18D248、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m129、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D4810、如图,正五边形ABCDE点D、E分别在直线m、n上若mn,120,则2为( )A52B60C58D56第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交
4、BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _2、如图,P是面积为S的ABCD内任意一点,如果PAD的面积为S1,PBC的面积为S2,那么S1+S2=_(用含的代数式表示)3、已知一个正五边形其一个内角的度数为 _4、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_5、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形中,E是上一点(1)用尺规完成以下基本操作:在下方作,使得,交于点F(保留作图痕迹,不写作法)
5、(2)在(1)所作的图形中,已知,求的度数2、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_3、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF4、如图,根据图上标注的信息,求出x的大小5、已知一个多边形的内角和与外角和的差为1440(1)求这个多边形的边数;(2)n边形中经过每一个顶点的对角线有n3条,其中每一条都重复了1次,所以,n边形共有条对角线求此多边形的对角线条数-参
6、考答案-一、单选题1、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.2、C【分析】根据多边形内角和公式求解即可【详解】解:A、三角形的内角和是,不符合题意;B、四边形的内角和是,不符合题意;C、五边形的内角和是,符合题意;D、六边形的内角和是,不符合题意故选:C【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形内角和公式n边形
7、的内角的和等于:(n大于等于3且n为整数)3、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.4、A【分析】根据D、E分别为ABC的边AB、AC的中点,可得DE是ABC的中位线,则,然后证明ABF=DFB,得到DF=BD=7,则DE=DF+EF=11,再由,进行求解即可【详解】解:D、E分别为AB
8、C的边AB、AC的中点,DE是ABC的中位线,DFB=CBF,BF平分ABC,ABF=CBF,ABF=DFB,DF=BD=7,DE=DF+EF=11,故选A【点睛】本题主要考查了三角形中位线定理,等腰三角形的性质与判定,角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握三角形中位线定理5、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质6、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360,那么边数n=360一个外角的度数【详解】解:这个正多边形的
9、边数为n,正n边形每个外角都是36,n=36036=10故选C【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键7、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、
10、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质8、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键9、B【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的
11、性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键10、D【分析】延长AB交直线n于点F,由正五边形ABCDE,可得出五边形每个内角的度数,再由三角形外角的性质可得,根据平行线的性质可得,最后再利用一次三角形外角的性质即可得【详解】解:如图所示,延长AB交直线n于点F,正五边形ABCDE,故选:D【点睛】题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键二、填空题1、1【分析】根据基本作图,得到EC是BCD的平分线,由ABCD,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基
12、本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键2、【分析】根据题意,作出合适的辅助线,然后根据图形和平行四边形的面积、三角形的面积,即可得到S和S1、S2之间的关系,本题得以解决【详解】解:过点P作EFAD交AD于点E,交BC于点F,四边形ABCD是平行四边形,AD=BC,S=BCEF,S1=,S2=,EF=PE+P
13、F,AD=BC,S1+S2=,故答案为:【点睛】本题考查平行四边形的性质、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答3、#【分析】先由正五边形的外角和为及每一个外角都相等求解一个外角,再根据这个外角与相邻的内角互补,从而可得答案.【详解】解:由正五边形的每一个外角都相等, 正五边形的每一个外角 正五边形的每一个内角为: 故答案为:【点睛】本题考查的是正多边形的内角,外角的性质,掌握正多边形的外角和为,每一个外角都相等是解本题的关键.4、6【分析】根据多边形内角和公式(n-2)180及多边形外角和始终为360可列出方程求解问题【详解】解:由题意得:(n-2)180=3602,
14、解得:n=6;故答案为6【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键5、144度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案【详解】解:四边形的四个外角的度数之比为1:2:3:4,四个外角的度数分别为:360;360;360;360;它最大的内角度数为:故答案为:144【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360,从而进行计算三、解答题1、(1)见解析;(2)【分析】(1)延长,在射线上截取两点,使得,作的垂线,交于点,在上截取,作
15、的中垂线,交于点,则即为所求;(2)根据三角形的外角性质以及平行线的性质即可求得的度数【详解】(1)如图所示,根据作图可知,四边形是平行四边形,四边形是平行四边形则即为所求;(2),由(1)可知【点睛】本题考查了尺规作图-作垂线,平行四边形的性质,三角形的外角性质,平行线的性质,掌握基本作图是解题的关键2、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD
16、,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键3、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质
17、,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.4、【分析】如图,首先根据四边形的内角和求出的度数,然后根据平角等于180即可求出x的大小【详解】解:如图,四边形内角和,【点睛】此题考查了四边形的内角和,邻补角的概念,解题的关键是熟练掌握多边形内角和公式和邻补角的概念n边形的内角的和等于:(n大于等于3且n为整数)5、(1)12;(2)54【分析】(1)设这个多边形的边数为n条,由题意列方程,求解即可;(2)将n的值代入计算即可【详解】解:(1)设这个多边形的边数为n条,由题意得,解得n=12,这个多边形的边数是12;(2)n=12,此多边形的对角线条数是54条【点睛】此题考查多边形的内角和与外角和的计算,多边形对角线的计算,熟记多边形内角和公式是解题的关键