《精品解析2021-2022学年浙教版初中数学七年级下册第五章分式专项测评练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第五章分式专项测评练习题(名师精选).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若关于的方程的解是正数,则的取值范围为( )ABC且D且2、若,则可用含和的式子表示为( )ABCD3、据成都新闻报道,某种病毒的半径约为5纳米,1纳米109米,则该病毒半径用科学记数法表示为()A5106米B5107米C5108米D5109米4、若(a1)1有意义,则a的取值范围是()Aa0Ba2Ca1Da15、若,则( )ABCD6、研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000
2、125用科学记数法表示为()A125109B12.5108C1.25107D1.251067、冠状病毒的一个变种是非典型肺炎的病原体,某种球形冠状病毒的直径是120纳米,1纳米109米,则这种冠状病毒的半径用科学记数法表示为()A1.2107米B1.21011米C0.61011米D6108米8、有一种花粉的直径是0.000064米,将0.000064用科学记数法表示应为( )ABCD9、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD10、新冠病毒由蛋白质外壳和单链核酸组成,直径大约在60140纳米(1纳米0.0000001厘米)某冠状病毒的
3、直径约0.0000135厘米数据“0.0000135”用科学记数法表示为()A1.35106B13.5106C1.35105D0.135104二、填空题(5小题,每小题4分,共计20分)1、把0.0000306用科学记数法表示为:_2、计算:_3、下列各式:;其中计算正确的有_(填序号即可)4、已知,则的取值范围是_5、计算_三、解答题(5小题,每小题10分,共计50分)1、解方程(组):(1);(2)2、计算:3、某社区拟建A,B两类摊位以搞活“地摊经济”,每个摊位的占地面积A类比B类多2平方米建A类,B类摊位每平方米的费用分别为40元,30元若用60平方米建A类或B类摊位,则A类摊位的个数
4、恰好是B类摊位个数的(1)求每个A,B类摊位的占地面积(2)已知该社区规划用地70平方米建摊位,且刚好全部用完请写出建A,B两类摊位个数的所有方案,并说明理由请预算出该社区建成A,B两类摊位需要投入的最大费用4、关于x的分式方程:(1)当m3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值5、计算:(1) (2)-参考答案-一、单选题1、C【分析】先解分式方程求解,根据方程的解为正数,求出a的范围,然后将方程的增根代入求出,所以a的取值范围是且【详解】解:解方程,得,是方程的增根,当时,解得,即当时,分式方程有增根,a的取值范围是且故选:C【点睛】本题考查了分式方程的解,
5、熟练解分式方程是解题的关键2、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤3、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:5纳米故选:D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定4、D【分析】直接利用负整数指数幂的定义得出答案【详解】解:若有意义,a-10,则的取值范围是:
6、故选:D【点睛】此题主要考查了负整数指数幂,正确掌握相关定义是解题关键5、A【分析】先根据有理数的乘方,零指数幂计算,然后比较大小,即可求解【详解】解:,故选:A【点睛】本题主要考查了有理数的乘方运算,零指数幂,有理数的比较大小,熟练掌握有理数的乘方运算法则,零指数幂法则是解题的关键6、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000125=1.2510-7,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,
7、其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:1202(纳米)60109米6108米故选:D【点睛】考核知识点:科学记数法理解科学记数法的规则是关键8、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000646.4105
8、故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值10、C【分析】用科学记数法表示较小的数,一般形式为
9、a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键二、填空题1、3.06【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00003063.06故答案为:3.06【点睛】本题考查了小于1的小数的科学记数法,熟练掌握科学记数法的基本原理是解题的关键2、2【分析】根据分式的运算法则即可
10、求解【详解】故答案为:2【点睛】此题主要考查分式的运算,解题的关键是熟知其运算法则3、【分析】根据负整数指数幂、积的乘方、多项式乘以多项式、完全平方公式,分别进行计算,即可得到答案【详解】,故计算正确,故计算正确,故计算错误,故计算正确,计算正确的有,故答案为:【点睛】本题考查了整式的混合运算及负整数指数幂的运算,熟练掌握运算法则是解题关键4、a-1【分析】根据零指数幂:a0=1(a0)判断即可【详解】解:根据题意知,a+10解得a-1故答案是:a-1【点睛】本题主要考查了零指数幂,注意:00无意义5、【分析】根据同底数幂的乘法,积的乘方的逆运算以及零指数幂求解即可【详解】解:故答案为:【点睛
11、】此题考查了同底数幂的乘法,积的乘方的逆运算以及零指数幂,掌握它们的运算规则是解题的关键三、解答题1、(1);(2)【分析】(1)根据代入消元法解二元一次方程组即可;(2)将分式方程转化为整式方程,求解验根即可【详解】解:(1)由得代入得, , 方程组的解为; (2) 经检验,是原方程的解 【点睛】本题主要考查了解二元一次方程组以及解分式方程,熟练掌握解二元一次方程组的两种消元方法以及解分式方程的一般步骤是解题的关键,注意解分式方程需要验根2、1【分析】直接利用零指数幂的性质、立方根的性质、算术平方根的性质分别化简得出答案【详解】原式4121【点睛】本题主要考查了零指数幂、立方根的、算术平方根
12、,解题的关键在于能够熟练掌握相关计算法则3、(1)每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)见解析;2650元【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,由题意:若用60平方米建A类或B类摊位,则A类摊位的个数恰好是B类摊位个数的列出分式方程,解方程即可;(2)设建A类摊位a个,B类摊位b个,由题意:该社区规划用地70平方米建摊位,且刚好全部用完列出二元一次方程,求出正整数解即可;求出建成A、B两类摊位需要投入的费用为-30b+2800,b越小,费用越大,即可求解【详解】解:(1)设每个B类摊位的占地面积为x平
13、方米,则每个A类摊位的占地面积为(x+2)平方米,由题意得:,解得:x=3,经检验,x=3是原方程的解,则x+2=5,答:每个A类摊位的占地面积为5平方米,则每个A类摊位的占地面积为3平方米;(2)有4个方案,理由如下:设建A类摊位a个,B类摊位b个,由题意得:5a+3b=70,则a=14-b,a、b为正整数,或或或,共有4个方案:A类摊位11个,B类摊位5个;A类摊位8个,B类摊位10个;A类摊位5个,B类摊位15个;A类摊位2个,B类摊位20个;建成A、B两类摊位需要投入的费用为:405a+303b=200(14-b)+90b=-30b+2800,b越小,费用越大,当b=5时,费用最大值=
14、-305+2800=2650(元),即该社区建成A、B两类摊位需要投入的最大费用为2650元【点睛】本题考查了分式方程的应用、二元一次方程的应用等知识;找准等量关系,列出分式方程和二元一次方程是解题的关键4、(1)x=-5;(2)-4或6【分析】(1)把m=3代入分式方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值【详解】解:(1)把m=3代入方程得:,去分母得:3x+2x+4=3x-6,解得:x=-5,检验:当x=-5时,(x+2)(x-2)0,分式方程的解为x=
15、-5;(2)去分母得:mx+2x+4=3x-6,这个关于x的分式方程会产生增根,x=2或x=-2,把x=2代入整式方程得:2m+4+4=0,解得:m=-4;把x=-2代入整式方程得:-2m=-12,解得:m=6【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值5、(1) (2)4【分析】(1)先计算零指数幂、负整数指数幂、同底数幂的除法和绝对值运算,再合并同类项即可得到答案;(2)先把原式变形为,再运用平方差公式计算即可得到答案【详解】解:(1)原式;(2)原式【点睛】此题考查了平方差公式及零指数幂、负整数指数幂、同底数幂的除法和绝对值运算,能够把原式变形为是解决(2)题关键