《2021-2022学年浙教版初中数学七年级下册第五章分式同步练习练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第五章分式同步练习练习题(名师精选).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式同步练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若表示一个整数,则整数可取值共有( )A3个B4个C5个D6个2、2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒将数据0.0000000099用科学记数法表示为( )ABCD3、等于( )ABCD4、有一种花粉的直径是0.000064米,将0.000064用科学记数法表示应为( )ABCD5、随着北斗系统全球组网的步伐,北斗芯片的
2、研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持目前,该芯片工艺已达22纳米(即0.000000022米)则数据0.000000022用科学记数法表示为()A0.22107B2.2108C22109D2210106、分式,中,最简分式有( )A1个B2个C3个D4个7、在研制新冠肺炎疫苗过程中,某细菌的直径大小为米,用科学记数法表示这一数字,正确的是( )ABCD8、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且9、计算:( )A1B1C3D310、实验测得,某种新型冠状
3、病毒的直径是120纳米(1纳米米),120纳米用科学记数法可表示为()A米B米C米D米二、填空题(5小题,每小题4分,共计20分)1、_2、纳米是一种长度单位,纳米米,冠状病毒的直径为纳米,用科学记数法表示为_米3、已知,则的取值范围是_4、已知,用,表示的式子为_5、以下结论:(ab)2(ba)2;(ab)3(ba)3;|ab|ba|;(ab)2a2b2;,其中正确结论的序号为 _三、解答题(5小题,每小题10分,共计50分)1、计算:(1)12021+()2+(3.14)0;(2)(6a3b24a2b)2ab2、解方程组:(1);(2);(3),求的值.3、计算:(1) (2)解方程组:(
4、1) (2)4、计算(1)4(2n)2(2n1)2(2)(1)2020(2)0|5|()35、计算或化简:(1)(3)0(0.2)2009(5)2010 (2)2(x4)(x4)(3)(x2)2(x1)(x1)-参考答案-一、单选题1、D【分析】由x是整数,也表示一个整数,可知x+1为4的约数,即x+1=1,2,4,从而得出结果【详解】解:x是整数,也表示一个整数,x+1为4的约数,即x+1=1,2,4,x=-2,0,-3,1,-5,3则整数x可取值共有6个故选:D【点睛】本题考查了此题首先要根据分式值是整数的条件,能够根据已知条件分析出x+1为4的约数,是解决本题的关键2、C【分析】绝对值小
5、于1的正数也可以利用科学记数法表示,一般形式为 a,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数 n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解: 0.0000000099=,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为 a,其中 1|a|10 , n 为由原数左边起第一个不为零的数字前面的0的个数所决定3、A【分析】直接利用负整数指数幂的性质化简得出答案【详解】解:3-1=,故选:A【点睛】此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键4、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数
6、法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000646.4105故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.0000000222.2108故选:B【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时
7、关键要确定a的值以及n的值6、B【分析】根据最简分式的定义,即可求得,最简分式:一个分式的分子与分母没有公因式时,叫最简分式【详解】,不是最简分式,是最简分式,最简分式有2个故选B【点睛】本题考查了最简分式,掌握最简分式的定义是解题的关键7、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键8、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分式有意义的条
8、件求解即可.【详解】解:,分式方程的解为非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.9、D【分析】根据负整数指数幂的意义计算即可【详解】解:故选D【点睛】本题考查了负整数指数幂的运算,任何不等于0的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数,即(a0,p是正整数);0的负整数指数幂没有意义10、B【分析】科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同【详解】解:120纳米米米故选:B【点睛】此题考查科学记数法的
9、表示方法科学记数法的表示形式为的形式,其中,为整数,表示时关键要确定的值以及的值二、填空题1、【分析】根据乘方、负整数指数幂、零指数幂结合实数运算法则计算即可【详解】解:原式,故答案为:【点睛】本题考查了实数的运算,负整数指数幂,零指数幂,熟知运算法则是解本题的关键2、1.210-7【分析】科学计数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解:纳米=米故答案为:【点睛】本题主要考查了科学计数法,解题的关键在于能够熟
10、练掌握科学计数法的定义3、a-1【分析】根据零指数幂:a0=1(a0)判断即可【详解】解:根据题意知,a+10解得a-1故答案是:a-1【点睛】本题主要考查了零指数幂,注意:00无意义4、【分析】根据分式的性质,将等式中的分式化为整式,再用,表示即可【详解】,即,故答案为:【点睛】本题考查了分式的性质,等式的性质,掌握分式的性质是解题的关键5、【分析】根据乘方的意义判断和,根据绝对值的概念判断,根据完全平方公式判断,根据异分母分式减法运算法则判断【详解】解:(ab)2(ba)2(ba)2,正确,故符合题意;(ab)3(ba)3(ba)3,原结论错误,故不符合题意;|ab|(ba)|ba|,正确
11、,故符合题意;(ab)2a22ab+b2,原结论错误,故不符合题意;,原结论错误,故不符合题意;正确结论的序号为,故答案为:【点睛】本题考查绝对值的意义,乘方的运算,分式的加减法,完全平方公式,理解乘方和绝对值的意义,掌握完全平方公式(ab)2a22ab+b2的结构是解题关键三、解答题1、(1);(2)【分析】(1)根据有理数的乘方,负整指数幂,零次幂进行计算即可;(2)直接根据多项式除以单项式的法则计算即可【详解】(1)(1)12021+()2+(3.14)0;(2)(6a3b24a2b)2ab【点睛】本题考查了有理数的乘方,负整指数幂,零次幂,多项式除以单项式,掌握以上运算法则是解题的关键
12、2、(1);(2)当时,;(3)【分析】(1)设,方程组变形为关于a与b的方程组,求出解得到a与b的值,即可求出x与y的值;(2)利用加减消元法求解即可;(3)先求出,再利用加减消元法可分别求出,代入计算后即可求得代数式的值【详解】解:(1),解:设,则原方程组可化为,2+3得:,则,把代入得:,则,即,5-得:,即,把代入得:,经检验,方程组的解为;(2),3,得,当时,将代入,得,解得,当时,原方程组的解为;(3),+,得,则,-,得,-,得,【点睛】此题主要考查了解二元一次方程组,利用了换元的思想,熟练加减消元法与代入消元法是解本题的关键3、(1)6;(2)2a+1;(1);(2)【分析
13、】(1)根据有理数的乘方,负整数指数幂,零指数幂的运算法则计算即可;(2)根据多项式乘多项式、平方差公式去括号,然后合并同类项即可(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可【详解】解:(1)原式=4+61=6;(2)原式=a2+3a-a-3-(a2-4)=a2+3a-a-3-a2+4=2a+1(1),把代入得:6y-3+4y=17解得:y=2,把y=2代入得:x=3,则方程组的解为;(2),+得:8x=16,解得:x=2,把x=2代入得:y=1,则方程组的解为【点睛】本题主要考查实数的运算和整式的运算,解二元一次方程组,要牢记零指数幂以及负整数指数幂的计算,整式
14、的运算法则以及消元的思想是解题的关键4、(1)16;(2)4【分析】(1)把4转化成底数为2,再根据同底数幂的乘法的法则与同底数幂的除法的法则进行运算即可;(2)根据幂的乘方,零指数幂,负整数指数幂等运算法则对式子进行运算即可【详解】解:(1)4(2n)2(2n1)22222n22n222+2n2n+22416;(2)(1)2020(2)0|5|()3115(8)15+84【点睛】本题主要考查同底数幂的乘除法,幂的乘方,零指数幂,负整数指数幂,属于基础题,解题的关键是熟记这些运算法则5、(1)6;(2)2x232;(3)4x5【分析】(1)第一项根据零指数幂计算,第二项根据积的乘方逆运算计算;(2)先根据平方差公式计算,再去括号即可;(3)先根据完全平方公式、平方差公式计算,再合并同类项;【详解】解:(1)原式1(0.2)2009(5)2009(5)1(0.25)20095156;(2)原式2(x216)2x232;(3)原式x24x4x214x5【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式,完全平方公式,积的乘方法则是解答本题的关键