《模拟测评2022年河北保定中考数学模拟真题测评-A卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《模拟测评2022年河北保定中考数学模拟真题测评-A卷(含答案及解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北保定中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多项式与多项式相加后,不含二次项,则常数m的值是( )A2BCD
2、2、关于x,y的方程组的解满足xy6,则m的最小整数值是()A1B0C1D23、在,中,最大的是( )ABCD4、已知ab,则下列不等式中不正确的是()A2a2bBa5b5C2a2bD5、如图,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图.这个拼成的长方形的长为30,宽为20,则图中部分的面积是()A60B100C125D1506、如果一个角的余角等于这个角的补角的,那么这个角是( )ABCD7、若,则下列不等式正确的是( )ABCD8、如图,三角形是直角三角形,四边形是正方形,已知正方形A的面积是64,正方形B的面积是100,则半圆C的面积是A3
3、6BCD9、日历表中竖列上相邻三个数的和一定是( )A3的倍数B4的倍数C7的倍数D不一定10、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的弦,是上一点,交于点,连接,若,则的度数为_ 线 封 密 内 号学级年名姓 线 封 密 外 2、数学组活动,老师带领学生去测塔高,如图,从点测得塔顶的仰角为,测得塔基的仰角为,已知塔基高出测量仪,(即),则塔身的高为_米3、如图,在中,F是边上的中点,则_1(填“”“=”或“”)4、如图,在高米,坡角为的楼梯表面铺地毯,地毯的长度至少需要
4、_米(精确到米)5、已知,则a=_, b=_三、解答题(5小题,每小题10分,共计50分)1、在二次函数yax2+bx+c中,x与y的部分对应值如表:X2023Y8003下列说法:该二次函数的图像经过原点;该二次函数的图像开口向下;该二次函数的图像经过点(1,3);当x0时,y随x的增大而增大;方程ax2+bx+c0有两个不相等的实数根,其中正确的有()ABCD2、在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y),给出如下定义:如果y,那么称点Q为点P的“关联点”例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6)(1)在点E(0,0),F(2,5
5、),G(-1,-1),H(-3,5)中, 的“关联点”在函数y2x+1的图象上;(2)如果一次函数yx+3图象上点M的“关联点”是N(m,2),求点M的坐标;(3)如果点P在函数y-x2+4(-2xa)的图象上,其“关联点”Q的纵坐标y的取值范围是-4y4,求实数a的取值范围3、计算(1); 线 封 密 内 号学级年名姓 线 封 密 外 (2);(3);(4)解方程:(5)先化简,再求值:已知,其中,4、已知关于x的一元二次方程+ax+a+30(1)求证:无论a为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y+ax+a+3与x轴交于点A(2,0)和点B,与y轴交于点C,连结BC
6、,BC与对称轴交于点D求抛物线的解析式及点B的坐标;若点P是抛物线上的一点,且点P位于直线BC的上方,连接PC,PD,过点P作PNx轴,交BC于点M,求PCD的面积的最大值及此时点P的坐标5、在平面直角坐标系中,抛物线与x轴交于点和点B,与y轴交于点C,顶点D的坐标为(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作轴交抛物线于点N,Q是直线AC上一个动点,当为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标-参考答案-一、单选题1、B【分析】合并同类项后使得二次项系数为零即可;【详解】解析:,当这个多项式不含二
7、次项时,有,解得故选B【点睛】本题主要考查了合并同类项的应用,准确计算是解题的关键2、B 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】先解方程组,得出x,y的值,再把它代入x+y6即可得出m的范围由此即可得出结论【详解】解方程组,得:x+y6,5m2+(49m)6,解得:m1,m的最小整数值是0故选B【点睛】本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组3、B【分析】根据绝对值及乘方进行计算比较即可【详解】,中,最大的是故选:B【点睛】本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键4、C【解析】【分析】根据不等式的性质分别对每
8、一项进行分析,即可得出答案【详解】Aab,根据不等式两边同时加上2,不等号方向不变,2a2b,正确;Bab,根据不等式两边同时加5,不等号方向不变,a5b5,正确;Cab,根据不等式两边同时乘以2,不等号方向改变,2a2b,本选项不正确;Dab,根据不等式两边同时乘以,不等号方向不变,正确故选C【点睛】本题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变5、B【分析】分析图形变化过程中的等量关系,求出变化后的长方形部分的长
9、和宽即可【详解】解:如图:拼成的长方形的长为(a+b),宽为(a-b), 线 封 密 内 号学级年名姓 线 封 密 外 ,解得a=25,b=5,长方形的面积=b(a-b)=5(25-5)=100故选B【点睛】本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系6、C【分析】设这个角是,根据题意得,解方程即可【详解】解:设这个角是,根据题意得,解得x=60,故选:C【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键7、D【分析】不等式性质1:不等式两边同时加上(减去)一个数,不等号方向不改变.;不
10、等式性质2:不等式两边同时乘(除)一个正数,不等号方向不改变.;不等式两边同时乘(除)一个负数,不等号方向改变.;【详解】A选项,不等号两边同时(-8),不等号方向改变,故A选项错误.;B选项,不等号两边同时-2,不等号方向不改变,故B选项错误.;C选项,不等号两边同时6,不等号方向不改变,故C选项错误.;D选项,不等号两边同时,不等号方向不改变,故D选项正确.;【点睛】不等式两边只有乘除负数时,不等号方向才改变.8、B【分析】根据正方形的性质分别求出DE,EF,根据勾股定理求出DF,根据圆的面积公式计算【详解】解:正方形A的面积是64,正方形B的面积是100,由勾股定理得,半圆C的面积,故选
11、B【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么9、A【分析】设中间的数字为x,表示出前一个与后一个数字,求出和即可做出判断【详解】解:设日历中竖列上相邻三个数的中间的数字为x,则其他两个为x-7,x+7,则三个数之和为x-7+x+x+7=3x,即三数之和为3的倍数故选:A【点睛】本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点10、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点
12、睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度二、填空题1、【分析】设AOC=x,根据圆周角定理得到B的度数,根据三角形的外角的性质列出方程,解方程得到答案【详解】解:设AOC=x,则B=x,AOC=ODC+C,ODC=B+A,x=20+30+x, 解得x=100 故选A【点睛】本题主要考查的是圆周角定理和三角形的外角的性质,掌握一条弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键2、【分析】易得BC长,用BC表示出AC长,ACCD=AD【详解】ABC中,AC=BCBDC中有DC=BC=20,AD=ACDC=BCBC=20(1)米故答案为2
13、0(1)【点睛】本题考查了仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形3、 线 封 密 内 号学级年名姓 线 封 密 外 【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,在中,F是边上的中点,故答案为:【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键4、【分析】首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度【详解】由题意可得:tan27=0.51,解得:AC3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米故答案为5.9【点睛】本题主要考查了解直
14、角三角形的应用,得出AC的长是解题的关键5、2 2 【分析】先根据异分母分式的加法法则计算,再令等号两边的分子相等即可【详解】解:,a(x2)b(x2)4x,即(ab)x2(ab)4x,ab4,ab0,a=b=2, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:2,2.【点睛】本题考查的是分式的加减法,在解答此类问题时要注意通分的应用三、解答题1、B【分析】根据表格可知当时,即可判断,根据二次函数图象的对称性可知对称轴为,在对称轴左边随的增大而减小,在对称轴的右边随的增大而增大,即可判断,根据对称性可知和时的函数值相等,即可判断,该函数存在两个函数值为0的点,则即可判断【详解】解:当
15、时,该二次函数的图像经过原点,故正确;对称轴为,方程ax2+bx+c0有两个不相等的实数根,故正确;和时的函数值相等即该二次函数的图像经过点(1,3),故正确在对称轴左边即,随的增大而减小,在对称轴的右边即,随的增大而增大,故不正确故正确的是故选B【点睛】本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键2、(1)F、H(2)点M(-5,-2)(3)【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y2x+1,看是否在函数图象上,即
16、可求解;(2)当m0时,点M(m,2),则2m+3;当m0时,点M(m,-2),则2m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y的取值范围是-4y4,而-2xa,函数图象只需要找到最大值(直线y4)与最小值(直线y-4)直线xa从大于等于0开始运动,直到与y-4有交点结束都符合要求-4y4,只要求出关键点即可求解(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y2x+1,得到:F(
17、2,5)和H(-3,-5)在函数y2x+1图象上;(2)解:当m0时,点M(m,2),则2m+3,解得:m-1(舍去);当m0时,点M(m,-2),-2m+3,解得:m-5, 线 封 密 内 号学级年名姓 线 封 密 外 点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y的取值范围是-4y4,而-2xa,函数图象只需要找到最大值(直线y4)与最小值(直线y-4)直线xa从大于等于0开始运动,直到与y-4有交点结束,都符合要求,-4-a2+4,解得:(舍去负值),观察图象可知满足条件的a的取值范围为:【点睛】本题考查二次函数的性质,一次函数的性质等
18、知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键3、(1)(2)(3)(4)(5);【分析】(1)(2)(3)根据有理数的混合运算进求解即可;(4)根据移项合并同类项解一元一次方程即可;(4)先去括号再合并同类项,再将的值代入求解即可(1)(2)(3) 线 封 密 内 号学级年名姓 线 封 密 外 (4)解得(5)当,时,原式【点睛】本题考查了有理数的混合运算,解一元一次方程,整式加减的化简求值,正确的计算是解题的关键4、(1)见解析;(2)y=,点B(4,0);PCD的面积的最大值为1,点P(2,4)【分析】(1)判断方程的判别式大于零即可;(2)把A(-2,0)代入解析
19、式,确定a值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B的坐标;设点P的坐标为(x,),确定直线BC的解析式y=kx+b,确定M的坐标(x,kx+b),求得PM=-(kx+b),从而利用C,D的坐标表示构造新的二次函数,利用配方法计算最值即可(1),=0,无论a为任何实数,此方程总有两个不相等的实数根(2)把A(-2,0)代入解析式,得,解得a=1,抛物线的解析式为,令y=0,得,解得x=-2(A点的横坐标)或x=4,点B(4,0);设直线BC的解析式y=kx+b,根据题意,得,解得, 线 封 密 内 号学级年名姓 线 封 密 外 直线BC的解析式为y=-x+4;抛物
20、线的解析式为,直线BC的解析式为y=-x+4;设点P的坐标为(x,),则M(x,),点N(x,0),PM=-()=,抛物线的对称轴为直线x=1,点D(1,3),=,当x=2时,y有最大值1,此时=4,PCD的面积的最大值为1,此时点P(2,4)【点睛】本题考查了待定系数法确定二次函数,一次函数的解析式,一元二次方程根的判别式,抛物线与x轴的交点,二次函数的最值,分割法求图形的面积,熟练掌握待定系数法,灵活构造二次函数是解题的关键5、(1);(2),;(3),;,;,;,; ,;,【分析】(1)根据顶点的坐标,设抛物线的解析式为ya(x1)24,将点A(1,0)代入,求出a即可得出答案;(2)利
21、用待定系数法求出直线BD解析式为y2x6,过点C作CP1BD,交抛物线于点P1,再运用待定系数法求出直线CP1的解析式为y2x3,联立方程组即可求出P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,证明OCEGCF(ASA),运用待定系数法求出直线CF解析式为yx3,即可求出P2(,);(3)利用待定系数法求出直线AC解析式为y3x3,直线BC解析式为yx3,再分以下三种情况:当QMN是以NQ为斜边的等腰直角三角形时,当QMN是以MQ为斜边的等腰直角三角形时,当QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可(1)解:顶点D的坐标为(1,4),设抛物线的解
22、析式为ya(x1)24,将点A(1,0)代入,得0a(11)24,解得:a1,y(x1)24x22x3, 线 封 密 内 号学级年名姓 线 封 密 外 该抛物线的解析式为yx22x3;(2)解:抛物线对称轴为直线x1,A(1,0),B(3,0),设直线BD解析式为ykx+e,B(3,0),D(1,4),解得:,直线BD解析式为y2x6,过点C作CP1BD,交抛物线于点P1,设直线CP1的解析式为y2x+d,将C(0,3)代入,得320+d,解得:d3,直线CP1的解析式为y2x3,结合抛物线yx22x3,可得x22x32x3,解得:x10(舍),x24,故P1(4,5),过点B作y轴平行线,过
23、点C作x轴平行线交于点G,OBOC,BOCOBGOCG90,四边形OBGC是正方形,设CP1与x轴交于点E,则2x30,解得:x,E(,0),在x轴下方作BCFBCE交BG于点F,四边形OBGC是正方形,OCCGBG3,COEG90,OCBGCB45,OCBBCEGCBBCF,即OCEGCF,OCEGCF(ASA),FGOE,BFBGFG3,F(3,),设直线CF解析式为yk1x+e1,C(0,3),F(3,),解得:,直线CF解析式为yx3, 线 封 密 内 号学级年名姓 线 封 密 外 结合抛物线yx22x3,可得x22x3x3,解得:x10(舍),x2,P2(,),综上所述,符合条件的P
24、点坐标为:(4,5)或(,);(3)解:(3)设直线AC解析式为ym1x+n1,直线BC解析式为ym2x+n2,A(1,0),C(0,3),解得:,直线AC解析式为y3x3,B(3,0),C(0,3),解得:,直线BC解析式为yx3,设M(t,t3),则N(t,t22t3),MN|t22t3(t3)|t23t|,当QMN是以NQ为斜边的等腰直角三角形时,此时NMQ90,MNMQ,如图2,MQx轴,Q(t,t3),|t23t|t(t)|,t23tt,解得:t0(舍)或t或t,;,;当QMN是以MQ为斜边的等腰直角三角形时,此时MNQ90,MNNQ,如图3,NQx轴,Q(,t22t3),NQ|t|
25、t2+t|,|t23t|t2+t|,解得:t0(舍)或t5或t2,M3(5,2),Q3(5,12);M4(2,1),Q4(0,3); 线 封 密 内 号学级年名姓 线 封 密 外 当QMN是以MN为斜边的等腰直角三角形时,此时MQN90,MQNQ,如图4,过点Q作QHMN于H,则MHHN,H(t,),Q(,),QH|t|t2+5t|,MQNQ,MN2QH,|t23t|2|t2+5t|,解得:t7或1,M5(7,4),Q5(7,18);M6(1,2),Q6(0,3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(5,12);M4(2,1),Q4(0,3);M5(7,4),Q5(7,18);M6(1,2),Q6(0,3) 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键