最新京改版七年级数学下册第八章因式分解课时练习试题(含答案及详细解析).docx

上传人:知****量 文档编号:28207889 上传时间:2022-07-26 格式:DOCX 页数:16 大小:162.48KB
返回 下载 相关 举报
最新京改版七年级数学下册第八章因式分解课时练习试题(含答案及详细解析).docx_第1页
第1页 / 共16页
最新京改版七年级数学下册第八章因式分解课时练习试题(含答案及详细解析).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《最新京改版七年级数学下册第八章因式分解课时练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《最新京改版七年级数学下册第八章因式分解课时练习试题(含答案及详细解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数2、下列各因式分解正确的是(

2、)ABCD3、下列从左边到右边的变形,是因式分解的是( )A(3x)(3x)9x2Bx2y2(xy)(xy)Cx2xx(x1)D2yzy2zzy(2zyz)z4、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b2a2;(5)a64,能用平方差公式分解的因式有( )A2个B3个C4个D5个5、下列变形,属因式分解的是( )ABCD6、下列各式从左到右的变形中,是因式分解的为()Ax(ab)axbxBx23x+1x(x3)+1Cx24(x+2)(x2)Dm+1x(1+)7、下列等式中,从左到右的变形是因式分解的是( )ABCD8、一元二次方程x23x0的根是( )Ax0Bx3C

3、x10,x23Dx10,x239、下列各式中从左到右的变形,是因式分解的是( )ABCD10、下列多项式中,能用平方差公式分解因式的是( )Aa2-1B-a2-1Ca2+1Da2+a第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:8a3b+8a2b22ab3_2、把多项式3a26a+3因式分解得 _3、在实数范围内分解因式:x23xyy2_4、分解因式:5x45x2_5、当x_时,x22x+1取得最小值三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)4x2y4xy2+y3(2)(a2+9)236a22、利用因式分解计算:(1)22014220

4、13;(2)(2)101+(2)1003、把下列多项式分解因式:(1)(2)4、我们知道,任意一个正整数c都可以进行这样的分解:c=ab(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称ab是c的最优分解并规定:M(c)=,例如9可以分解成19,33,因为9-13-3,所以33是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(

5、d)的最大值5、因式分解:(1)(2)-参考答案-一、单选题1、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.2、D【解析】【分析】利用提公因式法、公式法逐项进行因式分解即可【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键3、C【解析】【分

6、析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可【详解】解:A、(3x)(3x)9x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2xx(x1),属于因式分解,符合题意;D、2yzy2zz,原式分解错误,不符合题意;故选:C【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键4、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2b2不能用平方差公式分解因

7、式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.5、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意

8、;D、分解错误,故此选项不符合题意;故选:A【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键6、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键7、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,

9、据此逐一判断即可得答案【详解】A.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,B.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,C.是把一个多项式化为几个整式的积的形式,是因式分解,符合题意,D.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,故选:C【点睛】此题考查了因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解;练掌握因式分解的概念是题关键8、C【解析】【分析】利用提公因式法解一元二次方程【详解】解: x23x0或故选:C【点睛】本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键9、B【解析】【分析

10、】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式根据定义即可进行判断【详解】解:A,单项式不能因式分解,故此选项不符合题意;B,是因式分解,故此选项符合题意;C,是整式计算,故此选项不符合题意;D,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B【点睛】本题主要考查了因式分解的定义解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算10、A【解析】【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1)(a-1),正确; B、-a2-1=-( a2+1 ),错误;

11、 C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1),错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键二、填空题1、2ab(2ab)2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解【详解】解:原式2ab(4a24ab+b2)2ab(2ab)2,故答案为:2ab(2ab)2【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式2、3(a-1)2【解析】【分析】首先提取公因式3,再利用完全平方公式分解因式【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2,故

12、答案为:3(a-1)2【点睛】本题主要考查了综合提公因式和公式法分解因式,熟记公式结构是解题的关键3、【解析】【分析】先利用配方法,再利用平方差公式即可得【详解】解:=故答案为:【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等4、5x2(x1)(x1)【解析】【分析】直接提取公因式5x2,进而利用平方差公式分解因式【详解】解:5x4-5x2=5x2(x2-1)=5x2(x+1)(x-1)故答案为:5x2(x+1)(x-1)【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键5、1【解析】【分析】先根

13、据完全平方公式配方,再根据偶次方的非负性即可求解【详解】解:,当x1时,x22x+1取得最小值故答案为:1【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式三、解答题1、(1)y(2xy)2;(2)(a+3)2(a3)2【解析】【分析】(1)原式提取公因式y,再利用完全平方公式分解即可;(2)原式先利用平方差公式,进一步用完全平方公式分解即可【详解】解:(1)原式y(4x24xy+y2)y(2xy)2;(2)原式(a2+9+6a)(a2+96a)(a+3)2(a3)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键2、(1)22013;(2)210

14、0【解析】【分析】(1)根据22014222013进行解答即可;(2)根据(2)101(2)(2)100进行解答【详解】解:(1)220142201322201322013(2-1)22013=22013(2)(2)101+(2)100(2)(2)100+(2)100(-2+1)(2)100=2100【点睛】本题主要考查因式分解,熟练掌握提公因式是解题的关键3、(1);(2)【解析】【分析】(1)先提取公因式3x,然后利用平方差公式分解因式即可;(2)先提取公因式-5a,然后利用完全平方公式分解因式即可【详解】(1) ; (2)【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式

15、的方法4、(1);1;(2);【解析】【分析】(1)根据c=ab中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称ab是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键5、(1);(2)【解析】【分析】(1)先提取公因式,再十字相乘法进行因式分解(2)先去括号,再十字相乘法进行因式分解【详解】解:(1)=(2)=【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁