《难点解析:北师大版七年级数学下册第一章整式的乘除定向攻克试题(名师精选).docx》由会员分享,可在线阅读,更多相关《难点解析:北师大版七年级数学下册第一章整式的乘除定向攻克试题(名师精选).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第一章整式的乘除定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算中,结果正确的是( )ABCD2、已知,则a,b,c的大小关系是( )ABCD3、下列运算正确的是(
2、)Ax2x22x4Bx2x3x6C(x2)3x6D(2x)24x24、下列关系式中,正确的是( )A(ab)2a2b2B(ab)(ab)a2b2C(ab)2a2b2D(ab)2a22abb25、的值是( )ABCD6、若m2+6m+p2是完全平方式,则p的值是()A3B3C3D97、下列计算正确的是( )ABCD8、运用完全平方公式计算,则公式中的2ab是( )ABxCxD2x9、下列计算中,正确的是ABCD10、下列计算正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将关于x的多项式+2x+3与2x+b相乘,若积中不出现一次项,则b_2、若,则_
3、3、计算:_4、计算的结果是_5、直接写出结果:(1)=_;(2)()()=_;(3)_()=三、解答题(5小题,每小题10分,共计50分)1、计算:2、计算下列各题)(1) (2)3、计算:(1)(ab22ab)ab(2)(x2y)3(x22xy+4y2)(x+2y)4、已知,求代数式的值5、计算:(1)计算:(1)2010+()2(3.14)0;(2)计算:x(x+2y)(x+1)2+2x-参考答案-一、单选题1、C【分析】根据同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式的计算法则计算求解即可【详解】解:A、,计算错误,不符合题意;B、,计算错误,不符合题意;C、,计算正确,符
4、合题意;D、,计算错误,不符合题意;故选C【点睛】本题主要考查了同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式,熟知相关计算法则是解题的关键2、A【分析】根据幂的乘方的逆运算可直接进行排除选项【详解】解:,;故选A【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键3、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟
5、练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键4、D【分析】根据完全平方公式判断即可【详解】解:A选项,原式a22ab+b2,故该选项计算错误;B选项,原式(a+b)2a22abb2,故该选项计算错误;C选项,原式a2+2ab+b2,故该选项计算错误;D选项,原式(a+b)2(a+b)2a2+2ab+b2,故该选项计算正确;故选:D【点睛】本题考查了完全平方公式,掌握(ab)2=a22ab+b2是解题的关键5、B【分析】根据幂的乘方法则计算即可【详解】解:=,故选B【点睛】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键幂的乘方底数不变,指数相乘6、C【分析】根
6、据完全平方公式,即可求解【详解】解: 是完全平方式, ,解得: 故选:C【点睛】本题主要考查了完全平方式的应用,熟练掌握 和是解题的关键7、C【分析】根据幂的运算及整式的乘法运算即可作出判断【详解】A、,故计算不正确;B、,故计算不正确;C、,故计算正确;D、,故计算不正确故选:C【点睛】本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键8、C【分析】运用完全平方公式计算,然后和对比即可解答.【详解】解:对比可得-2ab=-x,则2ab=x.故选C.【点睛】本题主要考查了完全平方公式,理解完全平方公式的特征成为解答本题的关键.9、A【分析】根据单项式除以单
7、项式法则解答【详解】解:、,正确;、,故此选项错误;、,故此选项错误;、,故此选项错误;故选:A【点睛】此题考查了单项式除以单项式法则:系数与系数相除,相同字母与相同字母相除,正确掌握法则是解题的关键10、D【分析】根据完全平方公式逐项计算即可【详解】解:A.,故不正确;B.,故不正确;C.,故不正确;D.,正确;故选D【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(ab)2=a22ab+b2是解答本题的关键二、填空题1、3【分析】根据多项式乘法法则,乘完后,合并同类项,令x的系数为零即可【详解】解:根据题意得:(+2x+3)(2x+b)2+(4+b)+(6+2b)x+3b,由积中不出现
8、一次项,得6+2b0,解得:b3故答案为:3【点睛】本题考查了多项式的乘法中不含某项的问题,熟练掌握多项式的乘法及正确合并是解题的基础2、【分析】先根据已知等式可得,再根据同底数幂的乘法、负整数指数幂即可得【详解】解:由得:,则,故答案为:【点睛】本题考查了同底数幂的乘法、负整数指数幂,熟练掌握各运算法则是解题关键3、3【分析】根据零指数幂和负指数幂的意义计算【详解】解:,故答案为:3【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键4、【分析】根据负整数指数幂的运算法则计算即可【详解】解:,故答案为:【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键5、 【
9、分析】(1)先计算乘方,再计算整式的除法即可;(2)根据整式的除法法则计算即可;(3)根据整式的除法法则计算即可【详解】(1)=;(2)()()=2751=;(3)()()= 故答案为:,【点睛】本题考查了幂的乘方,多项式除以单项式,熟练掌握整式的除法法则是解题的关键三、解答题1、0【分析】由负整数指数幂、零指数幂、绝对值、乘方的运算法则进行化简,然后计算加减,即可得到答案【详解】解:=0;【点睛】本题考查了负整数指数幂、零指数幂、绝对值、乘方的运算法则,解题的关键是掌握运算法则,正确的进行化简2、(1);(2)6【分析】(1)根据多项式相乘的运算法则求解即可;(2)根据有理数的乘方,零指数幂
10、和负整数指数幂的运算法则求解即可【详解】(1)解:原式;(2)解:原式【点睛】此题考查了整式乘法中的多项式相乘,有理数的乘方,零指数幂和负整数指数幂的运算,解题的关键是熟练掌握以上运算法则3、(1)a2b3a2b2(2)6x2y+12xy216y3【分析】(1)根据单项式乘多项式的法则求解即可;(2)根据乘法公式以及多项式乘多项式的法则展开,再合并求解即可(1)解:(ab22ab)abab2ab2ababa2b3a2b2(2)解:(x2y)3(x22xy+4y2)(x+2y)(x2y)3(x3+8y3)x36x2y+12xy28y3x38y36x2y+12xy216y3【点睛】本题考查了整式的
11、乘法,熟练掌握整式乘法的运算法则以及乘法公式是解题的关键4、代数式的值为9【分析】先把变形为,然后利用完全平方公式以及多项式乘多项式,将式子去括号展开,并合并同类项,然后将整体代入化简的式子中求值即可【详解】解:由可得:, 原式,故该代数式的值为9【点睛】本题主要是考查了完全平方公式以及多项式乘多项式、整体代入法求解代数式的值,熟练利用完全平方公式以及多项式乘多项式,把整式进行化简,这是解决该题的关键5、(1)9;(2)2xy-1【分析】(1)直接利用乘方、负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)利用单项式乘多项式及完全平方公式展开,然后合并同类项即可得解【详解】解:(1)(1)2010+()2(3.14)0=1+9-1=9;(2)x(x+2y)(x+1)2+2x=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1【点睛】本题考查了整式的化简,以及乘方、负整数指数幂、零次幂,关键熟练掌握各运算法则