《必考点解析人教版九年级数学下册第二十七章-相似专项测评试题(精选).docx》由会员分享,可在线阅读,更多相关《必考点解析人教版九年级数学下册第二十七章-相似专项测评试题(精选).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,
2、则GF的长为()ABCD2、如图,ADBECF,AB3,BC2,DE3.6,则EF的值为()A1.8B2.4C4.8D5.43、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D13134、如图,点E,D,F在ABC的三边上,四边形AEDF是菱形,若,则的值为()ABCD5、下列可以判定ABCABC的条件是()AABCB且ACC且AAD以上条件都不对6、如图,P是直角ABC斜边AB上任意一点(A,B两点除外),过点P作一条直线,使截得的三角形与ABC相似,这样的直线可以作()A4条B3条C2条D1条7、某校开展“展青春风采,树强国信
3、念”科普阅读活动小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618特别奇妙的是在正五边形中,如图所示,连接顶点AB,AC,的平分线交边AB于点D,则点D就是线段AB的一个黄金分割点,即,已知,那么该正五边形的周长为( )A191cmB25cmC309cmD40cm8、下面两个图形中一定相似的是( )A两个长方形B两个等腰三角形C有一组对应角是的两个直角三角形D两个菱形 9、如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF交于点H下列结论:CF2AE;DFPBP
4、H;DP2PHPC;PE:BC(23):3正确的有()A1个B2个C3个D4个10、如图,把一张矩形纸片ABCD沿着AD和BC边的中点连线EF对折,对折后所得的矩形正好与原来的矩形相似,则原矩形纸片长与宽的比为( )A4:1BCD2:1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _2、如图,四边形和四边形都是平行四边形,点为的中点,分别交和于点,求_3、如图,、交于点,且,当_时,与相似4、如图,直线与x轴、y轴分别交于
5、点B、A,点C是x轴上一动点,以C为圆心,为半径的作,当与直线AB相切时,点C的坐标为_5、如图,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰直角中,过点作射线,为射线上一点,在边上(不与重合)且,与交于点(1)求证:;(2)求证:;(3)如果,求证:2、如图1,四边形ABCD是正方形,连接AC,是等腰直角三角形,DF交AC于点M(1)若DE交BC边于点H,连接BD,求证:(2)连接MH,求证:是等腰直角三角形(3)如图2,若DE交直线AC于点N,DF交BC于点P,交AB的延长线于点G,连接NG,若P是BC的中点,求NG的长3、ABC中,BCAC5,AB8,CD为AB边上
6、的高,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动ABC在平面上滑动如图2,设运动时间表为t秒,当B到达原点时停止运动(1)当t0时,求点C的坐标;(2)当t4时,求OD的长及BAO的大小;(3)求从t0到t4这一时段点D运动路线的长;(4)当以点C为圆心,CA为半径的圆与坐标轴相切时,求t的值4、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位
7、似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_5、如图,ACBD,AB与CD相交于点O,OC2OD若SAOC36,求SBOD-参考答案-一、单选题1、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBMBAE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90
8、,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键2、B【解析】【分析】根据平行线分线段成比例定理即可得出答案【详解】,故选:【点睛】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键3、D【解析】【分析】
9、根据一种数学课本的宽与长之比为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:长,长是26cm,宽,故选D【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例4、C【解析】【分析】根据菱形的性质可得,进而可得,进而可得【详解】解:点E,D,F在ABC的三边上,四边形AEDF是菱形,,故选C【点睛】本题考查了菱形的性质,平行线分线段成比例,掌握平行线分线段成比例是解题的关键5、C【解析】【分析】根据相似三角形的判定定理可得出答案【详解】A、只有一组角对应相等的两个三角形不一定相似;故A不符合题意;B、两边对应成比例,但夹角不相等的两个三角形不
10、一定相似,故B不符合题意;C、两边对应成比例且夹角相等的两个三角形相似,故C符合题意;故选:C【点睛】本题考查了相似三角形的判定定理,熟练掌握定理内容是解题的关键6、B【解析】【分析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案【详解】解:如图,过点P可作PEBC或PEAC,APEABC、PBEABC;过点P还可作PEAB,可得:EPAC90,AAAPEACB;满足这样条件的直线的作法共有3种故选:B【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理从是解题的关键7、C【解析】【分析】根据正五边形各边相等,各内角相等,得到 ,得到 ,再根据
11、求出AD即可求解 【详解】解:正五边形每个内角 ,每条边相等, , , , , ,DC为ACB的平分线, , , , , , , , ,该五边形周长 ,故选:C【点睛】本题考查正多边形的性质,三角形全等的判定与性质,黄金比例,通过全等求出正五边形边长是解题关键8、C【解析】【分析】根据相似图形定义,相似三角形的判定定理逐项判断即可求解【详解】解:A、因为长方形的大小,形状不确定,所以两个长方形不一定相似,故本选项不符合题意;B、因为等腰三角形的大小,形状不确定,所以两个等腰三角形不一定相似,故本选项不符合题意;C、因为直角相等,所以有一组对应角是的两个直角三角形中有两对相等的角,所以有一组对应
12、角是的两个直角三角形一定相似,故本选项符合题意;D、因为两个菱形的大小,形状不确定,所以两个菱形不一定相似,故本选项不符合题意;故选:C【点睛】本题主要考查了相似图形定义,相似三角形的判定定理,熟练掌握形状相同的图形是相似图形是解题的关键9、D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】解:BPC是等边三角形,BPPCBC,PBCPCBBPC60,在正方形ABCD中,ABBCCD,AADCBCD90,ABEDCF30,BE2AE,ADBC,FEPPBC,EFPPCB,EPFBPC,FEPEFPEPF60,EFP是等边三角形,BECF,CF2AE,故正确;PCCD
13、,PCD30,PDC75,FDP15,DBA45,PBD15,FDPPBD,DFPBPC60,DFPBPH,故正确;PDHPCD30,DPHDPC,DPHCPD,DP2PHPC,故正确;ABE30,A90,AEABBC,DCF30,DFDCBC,EFAE+DFBCBCBC,FE:BC(23):3,EFPE,PE:BC(23):3,故正确,综上,四个选项都正确,故选:D【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理10、B【解析】【分析】根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得【详解】根据条件可
14、知:矩形AEFB矩形ABCD,E为AD中点,原矩形纸片长与宽的比为故选B【点睛】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键二、填空题1、5【解析】【分析】因为DGEF2,所以G在以D为圆心,2为半径圆上运动,取DI1,可证GDICDG,从而得出GICG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在RtDEF中,G是EF的中点,DG,点G在以D为圆心,2为半径的圆上运动,在CD上截取DI1,连接GI,GDICDG,GDICDG,IG,BG+BG+IGBI,当B、G、I共线时,BG+CG最小BI
15、,在RtBCI中,CI3,BC4,BI5,故答案是:5【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点的运动轨迹是解题的关键2、【解析】【分析】由题意根据ABCD、ACDE,可得出PCQPAB,PCQRDQ,PABRDQ,进而根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系【详解】解:四边形ABCD和四边形ACED都是平行四边形,BC=AD=CE,ACDE,BC:CE=BP:PR,BP=PR,PC是BER的中位线,BP=PR,又PCDR,PCQRDQ又点R是DE中点,DR=RE, ,QR=2PQ又BP=PR=PQ+QR=3PQ,BP:PQ:QR=3:1:2故答案为:3:1
16、:2【点睛】本题考查相似三角形的判定和性质,注意掌握如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似3、故答案为:2【点睛】本题考查相似三角形的应用,熟知同一时刻物高与影长成比例是解答的关键454或37.5【解析】【分析】分两种情况考虑:AOCBOD;AOCDOB,利用相似三角形的性质即可求得OA的值【详解】当AOCBOD时,当AOCDOB时,综上得:OA=54或37.5故答案为:54或37.5【点睛】本题考查了相似三角形的性质,不过要分两种情况考虑,千万别忽略了
17、其中一种情况4、或#(7,0)或(-3,0)【解析】【分析】分两种情况:设C(0,t),作CMAB于M,如图,利用勾股定理计算出AB=,利用切线的性质得CMO=90,证明BMCBOA,利用相似比可计算出t=-3;同样证明BNCBOA,利用相似三角形的性质计算出t=7,从而得到C点坐标【详解】解:当点C在x轴的负半轴上,设C(t,0),作CMAB于M,如图,对于,当x=0时,y=1;当y=0时,x=2A(0,1),B(2,0)OA=1,OB=2,BC=2-t由勾股定理得, 直线AB与圆C相切,CMB=90又,BMCBOA,即 解得, 点C的坐标为(-3,0)当点C在x轴的正半轴上,设C(t,0)
18、,作CNAB于N,如图,BC=t-2, BNCBOA,即 解得, 点C的坐标为(7,0)综上,点C的坐标为(-3,0)或(7,0)故答案为(-3,0)或(7,0)【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点也考查了坐标与图形性质和分类讨论思想的应用以及相似三角形的判定与性质5、【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:/,解得:,故答案为:【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键三、解答题1、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根
19、据题意先由等腰直角ABC得到BAC=B=45,从而结合DAE=45得到DAC=EAB,再由平行线的性质得到ACP=BAC=B=45,从而得到ADCAEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合DAE=CAB=45得证结果;(3)根据题意结合ACD=45和ACB=90,由CD=CE得到CDE=CED=22.5,从而得到DAC=22.5,然后得到OCDDCA,最后即可求证【详解】解:(1)证明:是等腰直角三角形,BAC=B=45,DAE=45,PCAB,DAC=EAB,ACD=BAC=B=45,ADCAEB;(2)证明:ADCAEBADAE=
20、ACAB,即ADAC=AEAB,DAE=BAC=45,ADEACB;(3)ACD=45,ACB=90,CDE+CED=180-90-45=45,CDE=CED=22.5,ADEACB,ADE=ACB=90,CAD=180-ADE-CDE-ACD=180-90-22.5-45=22.5CAD=CDE,又OCD=DCA,OCDDCA,OCCD=CDCA,【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似2、(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的性质及各角之间的等量代换可得3=5,再依据相似三角形的判定定理即可证
21、明;(2)根据(1)中结论,利用相似三角形的性质可得:DMDE=DHDF,再由MDH=EDF,可得DMHDEF,利用角之间的关系及等腰三角形的判定即可证明;(3)根据正方形的性质及各角之间的关系可得DBGDCN,再由相似三角形的性质可得:DNDG=DC2DC=22,BGAG=BPAD,根据中点的性质及线段间的关系可得AG=2AB=4,再利用勾股定理计算即可得【详解】解:(1)证明:如图所示,四边形ABCD是正方形,1=2=ADB=BDC=45,BD=2AD,DEF是等腰直角三角形,DF=2ED,EDF=45,ADB=EDF=45,3+4=5+4,3=5,又1=2,ADMBDH;(2)ADMBD
22、H,DMDH=ADBD=AD2AD=22,又DEDF=DE2DE=22,DMDH=DEDF=22,DMDE=DHDF,又MDH=EDF,DMHDEF,DMH=DEF=90,又MDH=45,DMH为等腰直角三角形;(3)如图,四边形ABCD为正方形BDC=ACD=ABD=45,BD=2CD,AB=BC=CD=2,BDC=EDF=45,6+7=8+7,6=8,ADB=ACD=45,DBG=DCN=135,又6=8,DBGDCN,DN:DG=DC:DB,DNDG=DC2DC=22,DN=22DG,BGAG=BPAD,P为BC的中点,BP=12BC=12AD,BPAD=12,BGAG=12,B为AG的
23、中点,AG=2AB=4,在RtADG中,DG=AD2+AG2=22+42=25,DN=22DG=2225=10【点睛】本题考查正方形的性质、相似三角形的判定与性质、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题3、(1)(3,4);(2)OD4,BAO60;(3)23;(4)或325【解析】【分析】(1)先由,为边上的高,根据等腰三角形三线合一的性质得出为的中点,则AD=12AB=4,然后在RtCAD中运用勾股定理求出CD=3,进而得到点的坐标;(2)如图2,当t=4时即AO=4,先由为的中点,根据直角三角形斜边上的中线等于斜边的一半得出OD=12AB=4,则OA=OD=AD
24、=4,判定AOD为等边三角形,然后根据等边三角形的性质求出BAO=60;(3)从t=0到t=4这一时段点运动路线是弧DD1,由D1OD=30,OD=4,根据弧长的计算公式求解;(4)分两种情况:C与轴相切,根据两角对应相等的两三角形相似证明CADABO,得出ABCA=AOCD,求出的值;C与轴相切,同理,可求出的值【详解】解:(1)如图1,BCAC,CDAB,D为AB的中点,ADAB4在RtCAD中,CD52-423,点C的坐标为(3,4);(2)如图2,当t4时,AO4,在RtABO中,D为AB的中点,ODAB4,OAODAD4,AOD为等边三角形,BAO60;(3)如图3,从t0到t4这一
25、时段点D运动路线是弧DD1,其中,ODOD14,又D1OD906030,DD1=304180=23;(4)分两种情况:设AOt1时,C与x轴相切,A为切点,如图4CAOA,CAy轴,CADABO又CDAAOB90,RtCADRtABO,ABCA=AOCD,即85=t13,解得t1=245;设AOt2时,C与y轴相切,B为切点,如图5同理可得,t2=325综上可知,当以点C为圆心,CA为半径的圆与坐标轴相切时,t的值为或325【点睛】本题考查了圆的综合题,涉及到等腰三角形的性质,勾股定理,直角三角形的性质,等边三角形的判定与性质,弧长的计算,直线与圆相切,切线的性质,相似三角形的判定与性质,综合
26、性较强,有一定难度,其中第(4)问进行分类讨论是解题的关键4、(1)(4,2);(2)见解析;(3)【解析】【分析】(1)根据三角形的外接圆的圆心是三边垂直平分线的交点即可找到点P;(2)根据位似中心与三角形三个顶点的连线将原三角形扩大2倍即可;(3)根据直线和圆的位置关系:当半径大于或等于点A到BC的距离时,A与线段BC有一个或两个公共点即可【详解】解:如图所示:(1)点P即为ABC的外心,P点的坐标为(4,2),故答案为:(4,2);(2)图中画出的ABC即为所求作的图形;(3)观察图形可知:r=时,A与线段BC有一个公共点此时A与线段BC相切,当时,A只经过点,的取值范围是故答案为:【点睛】本题考查了作图位似变换、三角形的外接圆与圆心、直线与圆的位置关系,解决本题的关键是根据位似中心画位似图形5、9【解析】【分析】根据ACBD,可证AOCBOD,则SBODSAOC=ODOC2,由此求解即可【详解】解:ACBD,AOCBOD,SBODSAOC=ODOC2,又OC2OD,SBODSAOC=ODOC2=14,SBOD=14SAOC=9【点睛】本题主要考查了相似三角形的性质与判定,熟练掌握两个相似三角形的面积之比等于相似比的平方是解题的关键