《备考练习2022年石家庄桥西区中考数学模拟考试-A卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《备考练习2022年石家庄桥西区中考数学模拟考试-A卷(含答案及解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年石家庄桥西区中考数学模拟考试 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下
2、结论:(1)ba0;(2)|a|b|;(3)a+b0;(4)0其中正确的是( )A(1)(2)B(2)(3)C(3)(4)D(1)(4)2、不等式1”“=”或“”)2、根据下列各式的规律,在横线处填空:, -_=_.3、妈妈用10000元钱为小明存了6年期的教育储蓄,6年后能取得11728元,这种储蓄的年利率为_%4、已知点O在直线AB上,且线段OA4 cm,线段OB6 cm,点E,F分别是OA,OB的中点,则线段EF_cm.5、若直角三角形的两条直角边长分别为cm,cm,则这个直角三角形的斜边长为_cm,面积为_ .三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xO
3、y中,顶点为M的抛物线经过点B(3,1)、C(2,6),与y轴交于点A,对称轴为直线x1(1)求抛物线的表达式;(2)求ABM的面积;(3)点P是抛物线上一点,且PMBABM,试直接写出点P的坐标2、如图,线段厘米,点D和点C在线段AB上,且,点P从点A出发以4厘米/秒的速度沿射线AD向点C运动,点P到达点C所在位置后立即按照原路原速返回,到达点D所在位置后停止运动,点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,点Q到达点D所在的位置后停止运动点P和点Q同时出发,点Q运动的时间为t秒(1)求线段AD的长度;(2)当点C恰好为PQ的中点时,求t的值;(3)当厘米时,求t的值3、已知直线
4、与抛物线交于A,B两点(点A在点B的左侧),与抛物线的对称轴交于点P,点P与抛物线顶点Q的距离为2(点P在点Q的上方) 线 封 密 内 号学级年名姓 线 封 密 外 (1)求抛物线的解析式;(2)直线与抛物线的另一个交点为M,抛物线上是否存在点N,使得?若存在,请求出点N的坐标;若不存在,请说明理由;(3)过点A作x轴的平行线交抛物线于点C,请说明直线过定点,并求出定点坐标4、(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合研究数轴发现:如图所示的数轴上,点O为原点,点A、B表示的数分别是a和b,点B在点A的右边(即),则A、B两点之间的距离(即线段的长)(问题情境)如
5、图所示,数轴上点A表示的数,点B表示的数为,线段的中点C表示的数为x点M从点A出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N从点B出发,以每秒3个单位的速度沿数轴向左运动设运动时间为t秒(综合运用)根据“背景知识”和“问题情境”解答下列问题:(1)填空:A、B两点之间的距离_,线段的中点C表示的数_用含t的代数式表示:t秒后,点M表示的数为_;点N表示的数为_(2)求当t为何值时,点M运动到线段的中点C,并求出此时点N所表示的数(3)求当t为何值时,5、已知,点,是数轴上不重合的两个点,且点在点的左边,点是线段的中点点A,B,M分别表示数a,b,x请回答下列问题(1)若a1,b3,则点
6、A,B之间的距离为 ;(2)如图,点A,B之间的距离用含,的代数式表示为x ,利用数轴思考x的值,x (用含,的代数式表示,结果需合并同类项);(3)点C,D分别表示数c,d点C,D的中点也为点M,找到之间的数量关系,并用这种关系解决问题(提示:思考x的不同表示方法,找相等关系)若a2,b6,c则d ;若存在有理数t,满足b2t1,d3t1,且a3,c2,则t ;若A,B,C,D四点表示的数分别为8,10,1,3点A以每秒4个单位长度的速度向右运动,点B以每秒3个单位长度的速度向左运动,点C以每秒2个单位长度的速度向右运动,点D以每秒3个单位长度的速度向左运动,若t秒后以这四个点为端点的两条线
7、段中点相同,则t -参考答案-一、单选题1、B【分析】根据图示,判断a、b的范围:3a0,b3,根据范围逐个判断即可.【详解】解:根据图示,可得3a0,b3,(1)ba0,故错误;(2)|a|b|,故正确;(3)a+b0,故正确; 线 封 密 内 号学级年名姓 线 封 密 外 (4)0,故错误故选B【点睛】此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围2、A【分析】先求出不等式组的解集,再求不等式组的整数解【详解】去分母得:x7+23x2,移项得:2x3,解得:x故负整数解是1,共1个故选A【点睛】本题考查了不等式的
8、解法,并会根据未知数的范围确定它所满足的特殊条件的值一般方法是先解不等式,再根据解集求其特殊值3、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据题意可得:,故选:C【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程4、A【分析】利用待定系数法求函数解析式【详解】解:直线y=kx+b经过点P(-20,5),Q(10,20), ,解得,所以,直线解析式为故选A【点睛】本题主要考查待定系数法求函数解析式,是中考的热
9、点之一,需要熟练掌握解题的关键是掌握待定系数法5、A【分析】先把C45.15化成159的形式,再比较出其大小即可【详解】解:, 线 封 密 内 号学级年名姓 线 封 密 外 ,即故选:A【点睛】本题考查的是角的大小比较,熟知度、分、秒的换算是解答此题的关键6、B【解析】【分析】先解方程组,得出x,y的值,再把它代入x+y6即可得出m的范围由此即可得出结论【详解】解方程组,得:x+y6,5m2+(49m)6,解得:m1,m的最小整数值是0故选B【点睛】本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组7、C【分析】根据绝对值具有非负性可得a+2=0,b-3=0,解
10、出a、b的值,然后再求出a-b即可【详解】解:由题意得:a+2=0,b-3=0,解得:a= -2,b=3,a-b=-2-3=-5,故选:C【点睛】本题考查绝对值,关键是掌握绝对值的非负性8、B【分析】根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+918可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断【详解】每行、每列、每条对角线上三个数字之和都相等,而第1列:5+4+918,于是有5+b+318,9+a+318,得出a6,b10,从而可求出三个空格处的数为2、7、8,所以答案A、C、D正确,而2+7+81718,答案
11、B错误,故选B【点睛】本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口9、C【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据不等式的性质分别对每一项进行分析,即可得出答案【详解】Aab,根据不等式两边同时加上2,不等号方向不变,2a2b,正确;Bab,根据不等式两边同时加5,不等号方向不变,a5b5,正确;Cab,根据不等式两边同时乘以2,不等号方向改变,2a2b,本选项不正确;Dab,根据不等式两边同时乘以,不等号方向不变,正确故选C【点睛】本题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号
12、的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变10、D【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,解得:x=m3,关于x的分式方程=1的解是负数,m30,解得:m3,当x=m3=1时,方程无解,则m2,故m的取值范围是:m3且m2,故选D【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键二、填空题1、【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,在中, 线 封 密 内 号
13、学级年名姓 线 封 密 外 F是边上的中点,故答案为:【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键2、 【分析】观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数.【详解】解:故答案为:;【点睛】本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.3、2.88【分析】先设出教育储蓄的年利率为x,然后根据6年后总共能得本利和11728元,列方程求解【详解】解析:设年利率为,则由题意得,解得故答案为:【点睛】本题考查了一元一次方程的应用,关键在于找出题目中的等量关系,
14、根据等量关系列出方程解答4、1或5【分析】根据题意,画出图形,此题分两种情况;点O在点A和点B之间(如图),则;点O在点A和点B外(如图),则.【详解】如图,(1)点O在点A和点B之间,如图,则.(2)点O在点A和点B外,如图, 线 封 密 内 号学级年名姓 线 封 密 外 则.线段EF的长度为1cm或5cm.故答案为1cm或5cm.【点睛】此题考查两点间的距离,解题关键在于利用中点性质转化线段之间的倍分关系.5、 【详解】试题解析:由勾股定理得,直角三角形的斜边长=cm;直角三角形的面积=cm2故答案为三、解答题1、(1)y=x2-2x-2(2)3(3)(8,46)或(2,-2)【分析】(1
15、)由题意设抛物线解析式为y=ax2+bx+c,依题意得出三元一次方程组,解方程得出a、b、c的值,即可求出抛物线的解析式;(2)根据题意连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,求出直线AB的解析式,求出点Q的坐标,得出MQ的长,再利用SABM=SMQA+SMQB,即可求出ABM的面积;(3)根据题意分PM在AB的左侧和右侧两种情况进行讨论,即可得出点P的坐标(1)解:(1)设抛物线解析式为y=ax2+bx+c,抛物线经过点B(3,1)、C(-2,6),对称轴为直线x=1,解得:,设抛物线解析式为:y=x2-2x-2.(2)如图1,连接AB,过点M作y轴的平行线交AB于点Q,
16、连接AM、BM,当x=0时,y=-2,当x=1时,y=-3,A(0,-2),M(1,-3),设直线AB的解析式为y=mx+n,把A(0,-2),B(3,1)代入得:, 线 封 密 内 号学级年名姓 线 封 密 外 解得:,y=x-2,当x=1时,y=-1,Q(1,-1),MQ=-1-(-3)=2,SABM=SMQA+SMQB=MQ|xB-xA|=2|3-0|=3.(3)如图2,分两种情况分类讨论:当PM在AB的左侧时,PM交AB于点D,设D(t,t-2),B(3,1)、M(1,-3),PMB=ABM,BD=MD,解得:t=,D(,),设直线MD的解析式为y=kx+b,解得:,直线MD的解析式为
17、y=7x-10,解得: (舍去),P(8,46),当PM在AB的右侧时,PM交抛物线于点P,PMB=ABM,ABPM,设直线MP的解析式为y=x+d,把M(1,-3)代入得:-3=1+d,d=-4, 线 封 密 内 号学级年名姓 线 封 密 外 直线MP的解析式为y=x-4,解得: (舍去),P(2,-2),综上所述,点P的坐标为(8,46)或(2,-2)【点睛】本题考查二次函数综合题,熟练掌握并利用待定系数法和分类讨论的思想进行分析是解决问题的关键2、(1);(2)或;(3)、8,【分析】(1)先求出AC,再求出DC,根据AD=AC-DC即可;(2)表示出CP、CQ的长度,再根据CP=CQ列
18、方程即可,需要注意P到C之前和之后两种情况讨论;(3)表示出BP、BQ的长度,再根据列方程即可,需要注意P到C之前和之后以及P到D之前之后的多种情况讨论;【详解】(1),(2)点Q从点B出发以1厘米/秒的速度沿着射线BC的方向运动,P到达C之前时点C恰好为PQ的中点此时P在C左边,Q在C右边,且CP=CQ解得P到达C之后时点C恰好为PQ的中点此时P在C左边,Q在C右边,且CP=CQ解得故当点C恰好为PQ的中点时或(3)当P、Q到达C之前时, ,解得当P到达C之后、Q到达C之前时, , 线 封 密 内 号学级年名姓 线 封 密 外 解得当P到达D点时此时,当P到达D点以后、Q到达D之前,解得综上
19、当厘米时,、8,【点睛】此题考查线段和差计算、列一元一次方程解应用题等知识与方法,解题的关键是弄清点在运动时的出发点、方向、速度以及两个动点的运动属于相遇问题还是追及问题等3、(1)(2)存在,或(3),理由见解析【分析】(1)根据题意可得直线过定点,根据点P与抛物线顶点Q的距离为2(点P在点Q的上方),求得顶点坐标,根据顶点式求得的值,即可求得抛物线解析式;(2)过点分别作轴的垂线,垂足分别为,设抛物线与轴的另一个交点为,连接,交轴于点,过点作交轴于点,交于点,求得点的坐标,证明,即找到一个点,根据对称性求得直线的解析式,联立二次函数解析式找到另一个点;(3)设,则点坐标为,设直线的解析式为
20、,求得解析式,进而求得,联立直线和二次函数解析式,根据一元二次方程根与系数的关系求得,代入直线解析式,根据解析式判断定点的坐标即可(1),则当时,则必过定点,的对称轴为,顶点为与抛物线的对称轴交于点P,则点P与抛物线顶点Q的距离为2(点P在点Q的上方),抛物线解析式为:(2)存在,或直线的解析式为联立直线与抛物线解析式解得即如图,过点分别作轴的垂线,垂足分别为,连接,交轴于点,过点作交轴于点,交于点, 线 封 密 内 号学级年名姓 线 封 密 外 ,则此时点与点重合,设直线的解析式为则解得令,则四边形是矩形四边形是正方形设直线的解析式分别为则 线 封 密 内 号学级年名姓 线 封 密 外 解得
21、解析式为联立解得或综上所述,或(3)设,则点坐标为,设直线的解析式为,联立过定点【点睛】本题考查了待定系数法求二次函数解析式,正切的定义,解直角三角形,正方形的性质,直线与二次函数交点问题,数形结合是解题的关键4、(1)10,-12t-6;4-3t; 线 封 密 内 号学级年名姓 线 封 密 外 (2);(3)t=1或t=3【分析】(1)根据公式,代入计算即可根据距离公式,变形表示即可;(2)准确表示点M表示的数,点N表示的数,点C表示的数为-1,列式计算即可;(3)根据距离公式,化成绝对值问题求解即可(1)数轴上点A表示的数,点B表示的数为,AB=|-6-4|=10;线段的中点C表示的数为x
22、,4-x=x+6,解得x=-1,故答案为:10,-1根据题意,得M的运动单位为2t个,N的运动单位为3t个,数轴上点A表示的数,点B表示的数为,点M表示的数为2t-6;点N表示的数为4-3t故答案为:2t-6;4-3t(2)点M表示的数为2t-6,且点C表示的数为-1,2t-6=-1,解得t=;此时,点N表示的数为4-3t=4-=(3)点M表示的数为2t-6;点N表示的数为4-3t,MN=|2t-6-4+3t|=5|t-2|,AB=10,5|t-2|=5,解得t=1或t=3故当t=1或t=3时,【点睛】本题考查了数轴上两点间的距离,数轴上点表示有理数,绝对值的化简,正确理解两点间的距离公式,灵
23、活进行绝对值的化简是解题的关键5、(1)4(2),(3);0或或7【分析】(1)由图易得A、B之间的距离;(2)A、B之间的距离为两点表示的数差的绝对值;由数轴得点M表示的数x为,从而可求得x;(3)由(2)得:,其中a、b、c的值已知,则可求得d的值; 线 封 密 内 号学级年名姓 线 封 密 外 由可得关于t的方程,解方程即可求得t;分三种情况考虑:若线段与线段共中点;若线段与线段共中点;若线段与线段共中点;利用(2)的结论即可解决(1)AB=3+1=4故答案为:4(2);由数轴知:故答案为:,(3)由(2)可得:即解得:故答案为:由,得解得:故答案为:7由题意运动t秒后分三种情况:若线段与线段共中点,则,解得;若线段与线段共中点,则,解得;若线段与线段共中点,则,解得综上所述,故答案为:0或或7【点睛】本题考查了数轴上两点间的距离,数轴上线段中点表示的数,解一元一次方程等知识,灵活运用这些知识是关键,注意数形结合