《精品试卷:北师大版七年级数学下册第四章三角形专题训练试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试卷:北师大版七年级数学下册第四章三角形专题训练试卷(含答案解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第四章三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,D,E分别为BC,AD的中点,若CDE的面积使2,则ABC的面积是()A4B5C6D82、定理:三
2、角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA+B证法1:如图,A70,B63,且ACD133(量角器测量所得)又13370+63(计算所得)ACDA+B(等量代换)证法2:如图,A+B+ACB180(三角形内角和定理),又ACD+ACB180(平角定义),ACD+ACBA+B+ACB(等量代换)ACDA+B(等式性质)下列说法正确的是()A证法1用特殊到一般法证明了该定理B证法1只要测量够100个三角形进行验证,就能证明该定理C证法2还需证明其他形状的三角形,该定理的证明才完整D证法2用严谨的推理证明了该定理3、如图是55的正方形网格中,以D,E为顶
3、点作位置不同的格点的三角形与ABC全等,这样格点三角形最多可以画出()A2个B3个C4个D5个4、如图,ABCD,E+F85,则A+C( )A85B105C115D955、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组A,B,C,D,6、如图,已知ABC中,ABAC,A72,D为BC上一点,在AB上取BFCD,AC上取CEBD,则FDE的度数为()A54B56C64D667、下列叙述正确的是( )A三角形的外角大于它的内角B三角形的外角都比锐角大C三角形的内角没有小于60的D三角形中可以有三个内角都是锐角8、如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘
4、一侧选取了一点P,测得,那么点A与点B之间的距离不可能是( )ABCD9、下列三角形与下图全等的三角形是( )ABCD10、下列长度的三条线段能组成三角形的是( )A2,3,6B2,4,7C3,3,5D3,3,7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AC,BD相交于点O,若使,则还需添加的一个条件是_(只要填一个即可) 2、如图,在ABC中,ACB=90,AC=BC,BECE于点E,ADCE于点D若AD=3cm,BE=1cm,则DE=_3、如图,在AOB和COD中,OAOB,OCOD,OAOC,AOBCOD50,连接AC、BD交于点M,连接OM下列结论:
5、ACBD,AMB50;OM平分AOD;MO平分AMD其中正确的结论是 _(填序号)4、如图,AE是ABC的中线,BF是ABE的中线,若ABC的面积是20cm2,则SABF_cm25、如图,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动它们运动的时间为设点的运动速度为,若使得与全等,则的值为_三、解答题(5小题,每小题10分,共计50分)1、如图,BM、CN都是ABC的高,且BPAC,CQAB,请探究AP与AQ的数量关系,并说明理由2、如图,点D在AC上,BC,DE交于点F,(1)求证:;(2)若,求CDE的度数3、如图,点E、A、C在同一直线上,ABCD,BE,ACCD求证:BC
6、ED4、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:已知:AOB求作:AOB,使AOBAOB作图:(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D;(4)过点D画射线OB,则AOBAOB请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案写在相应的横线上)证明:由作图可知,在OCD和OCD中,OCD ,AOBAOB(2)这种作一个角等于已知角的方法依据是 (填序号)AAS;ASA;SSS;SAS5、如
7、图,ABCB,DCCB,E、F在BC上,A=D,BE=CF,求证:AF=DE-参考答案-一、单选题1、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积【详解】AD是BC上的中线,CE是中AD边上的中线,即,的面积是2,故选:D【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等2、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,
8、故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.3、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形【详解】根据题意,运用“SSS”可得与ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图故选C【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做到不重不漏4、D【分析】设交于点,过点作,根据平行线的
9、性质可得,根据三角形的外角性质可得,进而即可求得【详解】解:设交于点,过点作,如图,E+F85故选D【点睛】本题考查了平行线的性质,三角形的外角性质,平角的定义,掌握三角形的外角性质是解题的关键5、D【分析】利用三角形的三边关系,即可求解【详解】解:根据三角形的三边关系,得:A、,不能组成三角形,不符合题意;B、,不能够组成三角形,不符合题意;C、,不能够组成三角形,不符合题意;D、,能够组成三角形,符合题意故选:D【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边只差小于第三边是解题的关键6、A【分析】由“SAS”可证BDFCED,可得BFDCDE,由外角的性质
10、可求解【详解】解答:解:ABAC,A72,BC54,在BDF和CED中,BDFCED(SAS),BFDCDE,FDCB+BFDCDE+FDE,FDEB54,故选:A【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定定理与性质是解题的关键7、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60,一个三角形的三个角可以为: 故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角
11、三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.8、D【分析】首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB的取值范围,然后再判断各选项是否正确【详解】解:PA100m,PB90m,根据三角形的三边关系得到:,点A与点B之间的距离不可能是20m,故选A【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键9、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案【详解】由题可知,第三个内角的度
12、数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误故选:C【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键10、C【分析】根据三角形的三边关系,逐项判断即可求解【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题
13、主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键二、填空题1、OA=OD或AB=CD或OB=OC【分析】添加条件是,根据推出两三角形全等即可【详解】解:,理由是:在和中,理由是:在和中,理由是:在和中,故答案为:OA=OD或AB=CD或OB=OC【点睛】本题主要考查了全等三角形的判定,解题的关键是掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边2、2cm【分析】
14、易证CAD=BCE,即可证明BECDAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题【详解】解:ACB=90,BCE+DCA=90ADCE,DAC+DCA=90BCE=DAC,在BEC和DAC中,BCE=DAC,BEC=CDA=90BC=AC,BECDAC(AAS),CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2 cm故答案是:2cm【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证CDABEC是解题的关键3、【分析】由证明得出,正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,正确;作于,于,如图所示
15、:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,正确;假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故错误;即可得出结论【详解】解:,即,在和中,故正确;,由三角形的外角性质得:,故正确;作于,于,如图所示,则,平分,故正确;假设平分,则,在与中,而,故错误;所以其中正确的结论是故答案为:【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键4、5【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答【详解】解:AE是ABC的中线,BF是ABE的中线,SABF=SABC=20=5cm2故答案
16、为:5【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键5、或【分析】分两种情形:当时,可得:;当时, 根据全等三角形的性质分别求解即可【详解】解:当时,可得:, 运动时间相同,的运动速度也相同,;当时,故答案为:或【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题三、解答题1、AP=AQ,理由见详解【分析】由题意易得BNP=CMP=90,则有ABP+BPN=QCA+MPC=90,然后可得ABP=QCA,进而可证ABPQCA,最后问题可求解【详解】解:AP=AQ,理由
17、如下:BM、CN都是ABC的高,BNP=CMP=90,ABP+BPN=QCA+MPC=90,BPN=MPC,ABP=QCA,在ABP和QCA中,ABPQCA(SAS),AP=AQ【点睛】本题主要考查三角形的高线、直角三角形的性质及全等三角形的性质与判定,熟练掌握三角形的高线、直角三角形的性质及全等三角形的性质与判定是解题的关键2、(1)证明见解析;(2)CDE=20【分析】(1)由“SAS”可证ABCDBE;(2)由全等三角形的性质可得C=E,由三角形的外角性质可求解(1)证明:ABD=CBE,ABD+DBC=CBE+DBC,即:ABC=DBE,在ABC和DBE中,ABCDBE(SAS);(2
18、)解:由(1)可知:ABCDBE,C=E,DFB=C+CDE,DFB=E+CBE,CDE=CBE,ABD=CBE=20,CDE=20【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键3、见解析【分析】利用AAS定理证明ACBCED,根据全等三角形的对应边相等证明即可【详解】证明:ABCD,BACECD,在ABC和CED中, ACBCED(AAS),BCED【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、角角边、边边边是解题的关键4、(1)CD,OD,OCD,(2)【分析】(1)根据SSS证明DOCDOC,可得结论;(2)根
19、据SSS证明三角形全等(1)证明:由作图可知,在DOC和DOC中,OCDOCD(SSS),AOBAOB故答案为:CD,OD,OCD,(2)解:上述证明过程中利用三角形全等的方法依据是SSS,故答案为:【点睛】本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题5、见解析【分析】由题意可得B=C=90,BF=CE,由“AAS”可证ABFDCE,可得AF=DE【详解】证明:ABCB,DCCB,B=C=90,BE=CF,BF=CE,且A=D,B=C=90,ABFDCE(AAS),AF=DE,【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键