《精品解析2022年最新人教版八年级数学下册第十七章-勾股定理章节测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版八年级数学下册第十七章-勾股定理章节测评试题(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,RtABC中,ABC90,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D,与AB的延长线交
2、于点N,过D作DECN交CB的延长线于点P,交AN于点E,连接CE并延长交PN于点Q,则下列结论: ADP45;ANCACP;DCED;NQCDPQ;CNDEEP,其中正确的结论有( )个A2B3C4D52、如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于( )A2和3之间B3和4之间C4和5之间D5和6之间3、有下列条件:;,其中能确定是直角三角形的是( )ABCD4、已知直角三角形的斜边长为5cm,周长为12cm,则这个三角形的面积( )ABCD5、下列是勾股数的一组是( )A
3、6,8,10B2,3,4C1,2,3D5,7,116、如图,点A在点O的北偏西的方向5km处,根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是( )A点B在点A的北偏东方向5km处B点B在点A的北偏东方向5km处C点B在点A的北偏东方向km处D点B在点A的北偏东方向km处7、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b(ba),则(a+b)2的值为( )A24B25C49D138、如图,斜坡BC的长度为4米为了安全,决定降低坡度,将点C沿水平距离
4、向外移动4米到点A,使得斜坡AB的长度为4米,则原来斜坡的水平距离CD的长度是( )米A2B4C2D69、如图,在等边ABC中,ADBC于D,延长BC到E,使CEBC,F是AC的中点,连接EF并延长EF交AB于G,BG的垂直平分线分别交BG,AD于点M,点N,连接GN,CN,下列结论:ACNBCN;GFEF;GNC120;GMCN;EGAB,其中正确的个数是( )A2个B3个C4个D5个10、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,15第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边中,点E
5、为AC的中点,延长BC到点D,使得,延长交于点F,则_2、如图,在RtABC中,C=90,D为AC上的一点,且DA=DB=5,且DAB的面积为10,那么AB的长是_3、如图,所有阴影四边形都是正方形,两个空白三角形均为直角三角形,且、三个正方形的边长分别为、,则正方形的面积为_4、如图,在中,A是直角,AB=3,AC=3,则BC的长为_5、如图,Rt中,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,以下四个结论:;是等腰直角三角形;其中正确结论的序号有_三、解答题(5小题,每小题10分,共计50分)1、已知RtABC中,AC=BC,ACB90
6、,F为AB边的中点,且DF=EF,DFE90,D是BC上一个动点如图1,当D与C重合时,易证:CD2DB22DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明2、如图,已知,求的长3、如图,在ABC中,ACB90,ACBC,点D在边AB上,DECD,且DECD,CE交边AB于点F,连接BE(1)若AC6,CD7,求线段AD的长;(2)如图2,求证:CBE是直角三角形;(3)如图3,若CDCF,直接写出线段AC,CD,BE之间的数量关系4、在平
7、面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 5、如图,在ABC中,ACB=90,B=30,CD是高(1)若AB=8,则AD的长为_;(2)若M,N分别是CA,CB上的动点,点E在斜边AB上,请在图中画出点M,N,使DM+MN+NE最小(不写作法,保留作图痕迹)-参考答案-一、单选题1、B【分析】根据角平分线的定义,可得 ,再由三角形外角的性质,可得 ,再由DECN,可得ADP=45;延长PD与AC交于点 ,可证得 ,从而得到 ;然后根据ADCADE,
8、可得DC=ED;根据题意可得CQPN,且CDE、CQN、PQE均为等腰直角三角形,从而得到CQPNQE,进而得到 ;作EKCE交CN于点K,可得CEK是等腰直角三角形,从而得到CD=DK,CK=2CD,进而得到EKNCEP,从而得到PE=KN,得到CN= 2DE+EP,即可求解【详解】解:如图,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D, ,HCD=DAC+ADC,PCH=CAB+ABC=2HCD, ,DECN,CDP=90,ADP=45,故正确;如图,延长PD与AC交于点 ,1=PCD,DECN, , ,ADC=45,DPCN,EDA=CDA=45, , , ,故正确;在A
9、DC和ADE中,ADC=ADE=45,AD=AD,DAC=DAE,ADCADE(ASA),DC=ED,故正确;ABC=90,BNCP,DECN,E为CPN垂心,CQPN,且CDE、CQN、PQE均为等腰直角三角形,PQC=EQN=90,PQ=EQ,CQ=NQ, ,CQPNQE(SAS),CQ=NQ,CQ=EQ+CE=PQ+CE=PQ+CD,PEQ=45, ,故错误;如图,作EKCE交CN于点K,CDE为等腰直角三角形,DCE=45,CKE=45,CE=EK,CEK是等腰直角三角形,CD=DK,CK=2CD,KNE+PCN=CPE+PCN=90,KNE=CPE,PEQ=CKE=45,CEP=EK
10、N=135,在EKN和CEP中,EKN=CEP,KNE=CPE,CE=EK,EKNCEP(AAS),PE=KN,CN=CK+KN=2CD+EP,CN=CK+KN=2DE+EP,故错误正确的有,有3个故选:B【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识,熟练掌握全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识是解题的关键2、C【分析】因为OAB是一个直角三角形,且有OC=OB,所以可求得OB的长度即得C点所表示的数,可判断其大小【详解】解:ABOA在直角三角形OAB中有 OA2+AB2=OB245 又OC=OB点C所表示的数介于4和5之间故选
11、:C【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案3、C【分析】由题意根据所给的数据和三角形内角和定理,勾股定理的逆定理分别对每一项进行分析,即可得出答案【详解】解:由题意知,解得,则是直角三角形;,则不是直角三角形;由题意知,解得,则是直角三角形;由题意知,则是直角三角形;故选:C【点睛】本题主要考查直角三角形的判定方法注意掌握如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形4、C【分析】设该直角三角形的两条直角边分别为、,根据勾股定理和周长公式即可列出方程,然
12、后根据完全平方公式的变形即可求出的值,根据直角三角形的面积公式计算即可【详解】解:设该直角三角形的两条直角边分别为、,根据题意可得:将两边平方,得该直角三角形的面积为故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键5、A【分析】根据勾股数的定义逐项分析即可【详解】解:A、62+82102,此选项符合题意;B、22+3242,此选项不符合题意;C、12+2232,此选项不符合题意;D、52+72112,此选项不符合题意故选:A【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、
13、b、c叫做一组勾股数6、D【分析】过A作ACOM交ON于C,作ADON,求出AB及DAB即可得到答案【详解】过A作ACOM交ON于C,作ADON,如图:MON=90,AOC=30,AOM=120,由作图可知,OB平分AOM,AOB=AOM=60,B=30,在RtAOB中,OB=2OA=10,AOC=30,ACO=90,CAO=60,DAB=90-BAC=CAO=60,B在A北偏东60方向km处,故选:D【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型7、C【分析】根据勾股定理,可得 ,再由四个全等的直角三角形的面积之和等于大正方形
14、的面积减去小正方形的面积,可得 ,然后利用完全平方公式,即可求解【详解】解:根据题意得: ,四个全等的直角三角形的面积之和为 , ,即 , 故选:C【点睛】本题主要考查了勾股定理,完全平方公式的应用,勾股定理,完全平方公式是解题的关键8、A【分析】设米,米,根据勾股定理用含的代数式表示,进而列出方程,解方程得到答案【详解】解:设米,米,在中,即,在中,即,解得:,即米,故选:A【点睛】本题考查的是勾股定理的应用,解题的关键是灵活运用勾股定理列出方程9、B【分析】由是等边三角形,不是中点可判断;根据等边三角形的性质和三角形外角的性质得,由可判断;设,则,表示和的长可判断;作辅助线,构建三角形全等
15、,先根据角平分线的性质得,由线段垂直平分线的性质得,证明,可判断【详解】解:是等边三角形,是的垂直平分线不是中点,N点不在ACB的角平分上,CN不平分ACB,故错误;是等边三角形,是的中点,故正确;设,则,在中,故正确;如图,过作于,连接,在等边中,平分,是的垂直平分线,在中,故错误;在和中,故正确故选:B【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、垂直平分线的性质、含30角的直角三角形的性质等知识;熟练掌握勾股定理和等边三角形的性质,证明三角形全等是解题的关键10、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三
16、角形,故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键二、填空题1、2【分析】由已知可得DFAB,DAEF30,设AFx,根据含30角的直角三角形性质和勾股定理算出线段长即可【详解】解:ABC为等边三角形,ABAC,A60,ACB60,ACBCED+D,CDCE,CEDDACB30,AEFCED30,AFE180AAEF90,设AFx,则AE2x, ,点E为AC的中点,ABACBC4x,BF3x,CDCE,BD6x,ED,故答案为:2
17、【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质,勾股定理的应用是解题关键2、4【分析】由SDABDABC10且DA5得出BC4,再在RtBCD中,利用勾股定理求出,然后在Rt中通过勾股定理可得答案【详解】解:C90,DA5,SDABDABC10,BC4在RtBCD中,CD2BC2BD2,即CD24252,解得:CD3,在Rt中,,故答案为:【点睛】本题主要考查了勾股定理,解题的关键是掌握勾股定理,在任何一个直角三角形中,两条直角边的平方和一定等于斜边的平方3、45【分析】设正方形A,B,C,D的边长分别为a,b,c,d,根据勾股定理得,然后代入计算
18、即可【详解】解:设正方形A,B,C,D的边长分别为a,b,c,d,根据勾股定理得,正方形A、B、C的面积依次为4、16、25,根据图形得:41625,解得:45,故答案为:45【点睛】本题主要考查了勾股定理的应用,掌握勾股定理是解题的关键4、【分析】根据勾股定理可直接进行求解【详解】解:在中,A是直角,AB=3,AC=3,;故答案为【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键5、【分析】根据折叠的性质,然后结合等腰三角形的性质,直角三角形的性质,以及勾股定理,分别对每个选项进行判断,即可得到答案【详解】解:由折叠的性质可知,;故正确;,是等腰直角三角形;故正确;由勾股定理,则,由
19、勾股定理,则,故错误;,;故正确;正确的选项有;故答案为:;【点睛】本题考查了折叠的性质,勾股定理,等腰三角形的判定和性质,三角形的面积公式等知识,解题的关键是掌握折叠的性质,正确得到边相等、角相等三、解答题1、(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论【详解】解:(1)CD2+DB2=2DF2 证明:DF=EF,DFE90, 连接CF,BE,如图 ABC是等腰直角三角形,F为斜边AB的
20、中点 ,即 , 又 在和中 , ,CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接CF、BECF=BF,DF=EF又DFC+CFE=EFB+CFB=90DFC=EFBDFCEFB CD=BE,DCF=EBF=135 EBD=EBFFBD=13545=90 在RtDBE中,BE2+DB2=DE2 DE2=2DF2 CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题2、的长为【分析】连接,在中,根据勾股定理求出,然后在根据勾股定理求出即可【详解】解:连接,在中,在中
21、,故的长为【点睛】本题考查了勾股定理,熟练掌握勾股定理是解本题的关键3、(1);(2)见解析;(3)AC2+BE22CD2,理由见解析【分析】(1)根据题意过点C作CMAB于M,由等腰直角三角形的性质得CMAB, AMBM,CMABAMBM6,再由勾股定理得DM,即可求解;(2)根据题意过点C作CMAB于M,过E作ENAB于N,证CDMDEN(AAS),得CMDN,DMEN,则DM+MNCM,由(1)得ABC45,CMABAMBM,证出DMBNEN,得BNE是等腰直角三角形,即可解决问题;(3)根据题意过点C作CMAB于M,过E作ENAB于N,由(2)可知:ENBNDM,BE2EN2+BN22
22、EN22DM2,则DM2BE2,再由AC2CM2+AM2,CD2CM2+DM2,即可得出结论【详解】解;(1)过点C作CMAB于M,如图1所示:ACB90,ACBC,AC6,ABAC12,CMAB,AMBM,CMABAMBM6,DM,ADAMDM6;(2)证明:过点C作CMAB于M,过E作ENAB于N,如图2所示:则CMDDNE90,MCD+MDC90,DECD,MDC+NDE90,MCDNDE,又CDDE,CDMDEN(AAS),CMDN,DMEN,DM+MNCM,由(1)得:ABC45,CMABAMBM,BMMN+BNCMDM+MN,DMBNEN,BNE是等腰直角三角形,ABE45,CBE
23、ABC+ABE90,CBE是直角三角形;(3)AC2+BE22CD2,理由如下:过点C作CMAB于M,过E作ENAB于N,如图3所示:由(2)可知:ENBNDM,BE2EN2+BN22EN22DM2,DM2BE2,在RtACM中,CMAM,AC2CM2+AM2,在RtCDM中,CMAM,CD2CM2+DM2,CD2AC2+ BE2,AC2+BE22CD2【点睛】本题属于三角形综合题目,主要考查全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、直角三角形斜边上的中线性质等知识;本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键4、(1)见解析;(2)(0,)
24、【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质5、(1);(2)作图见解析【分析】(1)先利用含的直角三角形的性质求解 再利用勾股定理求解 再利用求解,再利用勾股定理求解即可;(2)作点关于的对称点 作关于的对称点,连接 交于 交于 则此时的值最小,即为线段的长.【详解】解:(1) ACB=90,B=30,AB=8, 故答案为: (2)如图,即为所求作的点,【点睛】本题考查的是含的直角三角形的性质,勾股定理的应用,利用轴对称的性质确定线段和取最小值时点的位置,掌握“轴对称的性质”是解本题的关键.