《人教版八年级数学下册第十七章-勾股定理专项测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十七章-勾股定理专项测评试卷(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方
2、式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD2、如图,RtABC中,ACB90,ABC30,分别以AC,BC,AB为一边在ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S14,则S3为()A8B16CD+43、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b(ba),则(a+b)2的值为( )A24B25C49D134、在ABC中,C90,AB3,则AB2+BC2+AC2的值为( )A6B9C1
3、2D185、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,156、在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为( )A1BCD7、在ABC中,C90,BC2,sinA,则边AC的长是()AB3CD8、如图,在三角形,是上中点,是射线上一点是上一点,连接,点在上,连接,则的长为( )AB8CD99、如图,在RtABC中,AB6,BC8,AD为BAC的平分线,将ADC沿直线AD翻折得ADE,则DE的长为( )A4B5C6D710、如图,一圆柱高,底面半径为,一只蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短
4、路程(取3)是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)已知甲、乙两人在同一地点出发,甲往东走了4 km,乙往南走了3 km,这时甲、乙两人相距_km(2)如图是某地的长方形大理石广场示意图,如果小王从A角走到C角,至少走_米(3)如图:有一个圆柱,底面圆的直径AB ,高BC12,P为BC的中点,蚂蚁从A点爬到P点的最短距离是_2、在ABC中,ABAC12,A30,点E是AB中点,点D在AC上,DE3,将ADE沿着DE翻折,点A的对应点是点F,直线EF与AC交于点G,那么DGF的面积_3、如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A沿侧
5、面爬到点B处吃食,要爬行的最短路程是_cm4、如图,已知RtABC中,ACB90,BAC30,延长BC至D使CDBC,连接AD,若E为线段CD的中点,且AD4,点P为线段AC上一动点,连接EP,BP,则EPAP的最小值为 _,则2BP+AP的最小值为 _(注:在直角三角形中,30角所对的直角边等于斜边的一半)5、已知在ABC中,AB,AC2,BC边上的高为,那么BC的长是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ACB90,AB10cm,BC6cm,若点P从点A出发,以每秒4厘米的速度沿折线ACBA运动(运动一周回到点A时停止运动),设运动时间为t秒(0)(1)点P
6、在AC上运动时,是否存在点P,使得PAPB?若存在,求出t的值;若不存在,说明理由;(2)若点P运动到BC上某点时使ACP的面积为16cm2,求此时t的值2、如图,有一张直角三角形纸片,两直角边AC6cm,BC8cm,将ABC折叠,使点B与点A重合,折痕为DE,求CD的长3、如图在的正方形网格中,每个小正方形的顶点称为格点点A,点B都在格点上,按下列要求画图(1)在图中,AB为一边画,使点C在格点上,且是轴对称图形;(2)在图中,AB为一腰画等腰三角形,使点C在格点上;(3)在图中,AB为底边画等腰三角形,使点C在格点上4、如图,在矩形ABCD中,AD10,AB6E为BC上一点,ED平分AEC
7、,求:点A到DE的距离5、如图:一个圆柱的底面周长为16cm,高为6cm,BC是上底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,求蚂蚁爬行的最短路程(要求画出平面图形) -参考答案-一、单选题1、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键2、B【分析】根据直角三角形30度角的性质得到AB=2AC,再利用正方形
8、面积公式求值【详解】解:RtABC中,ACB90,ABC30,AB=2AC,S3=AB2=4AC2=4S116,故选:B【点睛】此题考查了直角三角形30度角的性质:直角三角形30度角所对的直角边等于斜边的一半,熟记性质是解题的关键3、C【分析】根据勾股定理,可得 ,再由四个全等的直角三角形的面积之和等于大正方形的面积减去小正方形的面积,可得 ,然后利用完全平方公式,即可求解【详解】解:根据题意得: ,四个全等的直角三角形的面积之和为 , ,即 , 故选:C【点睛】本题主要考查了勾股定理,完全平方公式的应用,勾股定理,完全平方公式是解题的关键4、D【分析】根据,利用勾股定理可得,据此求解即可【详
9、解】解:如图示,在中,故选:D【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,满足是解题的关键5、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三角形,故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键6、C【分析】根据RtABC和勾股定理可得出AB两点间的距离【详解】解:在RtABC中,AC1,BC,可得:AB,故选:C【点睛】本题考查了勾股定理,
10、得出正方体上A、B两点间的距离为直角三角形的斜边是解题关键7、A【分析】先根据BC2,sinA求出AB的长度,再利用勾股定理即可求解【详解】解:sinA,BC2,AB3,AC,故选:A【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键8、D【分析】延长EA到K,是的AK=AG,连接CK,先由勾股定理的逆定理可以得到ABC是等腰直角三角形,BAC=90,ACB=ABC=45,由BF=FE,得到FBE=FEB,设BFE=x,则,然后证明CB=FC=FE,得到FBC=FCA,AFB=AFC则,即可证明,推出;设,证明ABGACK,得到,即可推出ECK=K,得到E
11、K=EC,则,由此即可得到答案【详解】解:延长EA到K,是的AK=AG,连接CK,在三角形,ABC是等腰直角三角形,BAC=90,ACB=ABC=45,BF=FE,FBE=FEB,设BFE=x,则,H是BC上中点,F是射线AH上一点,AHBC,AH是线段BC的垂直平分线,FAC=45,CB=FC=FE,FBC=FCA,AFB=AFC,设,AG=AK,AB=AC,KAC=GAB=90,ABGACK(SAS),ECK=K,EK=EC,故选D【点睛】本题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识
12、是解题的关键9、B【分析】在中利用勾股定理求出长,利用折叠性质:得到,求出对应相等的边,设DEx,在中利用勾股定理,列出关于的方程,求解方程即可得到答案【详解】解:AB6,BC8,ABC90,AC,AD为BAC的平分线,将ADC沿直线AD翻折得ADE,A、B、E共线,ACAE10,DCDE,BEAEAB1064,在RtBDE中,设DEx,则BD8x,BD2+BE2DE2,(8x)2+42x2,解得x5,DE5,故选:B【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问
13、题的关键10、A【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解【详解】解:如图,圆柱高,底面半径为,在RtACB中,由勾股定理得,蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程为15cm;故选A【点睛】本题主要考查勾股定理,熟练掌握勾股定理求最短路径问题是解题的关键二、填空题1、5 50 10 【分析】(1)因为甲向东走,乙向南走,其刚好构成一个直角两人走的距离分别是两直角边,则根据勾股定理可求得斜边即两人的距离;(2)连接AC,利用勾股定理求出AC的长即可解决问题;(3)把圆柱的侧面展开,连接AP,利用勾股定理即可得出AP的长,即蚂蚁从A点爬到P
14、点的最短距离【详解】解:(1)如图,AOB=90,OA=4km,OB=3km,AB=5km故答案为:5;(2)如图连接AC,四边形ABCD是矩形,B=90,在RtABC中,B=90,AB=30米,BC=40米,AC=50(米)根据两点之间线段最短可知,小王从A角走到C角,至少走50米,故答案为:50;(3)解:已知如图:圆柱底面直径AB=,高BC=12,P为BC的中点,圆柱底面圆的半径是,BP=6,AB=2=8,在RtABP中,AP=10,蚂蚁从A点爬到P点的最短距离为10故答案为:10【点睛】本题考查勾股定理的应用,平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答
15、此题的关键2、6或6+9【分析】分两种情况:如图1,当点D在H点上方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,如图2,当点D在H点下方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,先求出三角形AEG的AE边上的高GQ和三角形ADE的AD边上的高,根据SDGF2SAEDSAEG可分别求出答案【详解】解:如图1,当点D在H点上方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,AB12,点E是AB的中点,AEAB6,EHAC,AHE90,A30,AE6,AH3,DE3,DH3,DHEH,ADAHDH33,EDH45,AEDEDHA15,由折叠的
16、性质可知,DEFAED15,AEG2AED30,AEGA,AGGE,GQAE,AQAE3,A30,GQAG,GQ2+32(2GQ)2,GQSAEDSFED,SDGF2SAEDSAEG,SDGF2369如图2,当点D在H点下方时,过点E作EHAC交AC于点E,过点G作GQAB交AB于点Q,AB12,点E是AB的中点,AEAB6,EHAC,AHE90,同理求得DHEH,AH3,AD3+3,DEH45,AED90A+DEH105,由折叠的性质可得出DEFAED105,AEG2AED18030,AEGA,AGGE,同求出GQ,SDGF2SAEDSAEG,SDGF26+9故答案为:6或6+9【点睛】本题
17、考查了折叠的性质,等腰三角形的性质,直角三角形的性质,勾股定理,等腰直角三角形的性质,熟练掌握折叠的性质是解题的关键3、10【分析】将圆柱展开,然后利用两点之间线段最短解答【详解】解:一圆柱高8cm,底面半径为cm,底面周长为:212cm,则半圆弧长为6cm,展开得:BC8cm,AC6cm,由勾股定理得:(cm)故答案为:10cm【点睛】本题考查了勾股定理的实际运用求最短距离,解题的关键是根据题意画出展开图,表示出各线段的长度4、 【分析】先证明是等边三角形,根据含30度角的直角三角形的性质,根据线段和的最小值转化,进而勾股定理求解即可【详解】解:过点作于点,交于点,过点作于点,ACB90,B
18、AC30,EPAP当三点共线时,点和点重合,重合,如图, EPAP的最小值为的长,ACB90,BAC30, CDBC,又是等边三角形 E为线段CD的中点,在中EPAP的最小值如图,过点作于,过点作于,则则当三点共线时,取得最小值,即取得最小值即此时重合,是等边三角形,在中,即最小值为的最小值为故答案为:;【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,线段和的最小值,转化是解题的关键5、4cm或2cmcm或4cm【分析】首先应分两种情况进行讨论,C是锐角和钝角两种情况在直角ABD和直角ACD中,利用勾股定理求得BD,CD的长,当C是锐角时,BCBD+CD;当C是钝角时,BCBDCD,
19、据此即可求解【详解】解:在直角ABD中,在直角ACD中, 当C是锐角时(如图1),D在线段BC上,BCBD+CD3+14;当C是钝角时,D在线段BC的延长线上时(如图2),BCBDCD312cm则BC的长是4cm或2cm故答案是:4cm或2cm【点睛】本题主要考察了勾股定理的应用,分类讨论三角型的形状是解题的关键三、解答题1、(1);(2)【分析】(1)如图所示,连接PB,则,先由勾股定理求出,最后在直角BCP中利用勾股定理求解即可;(2)根据题意可得,再由进行求解求解【详解】解:(1)假设存在,如图所示,连接PB,由题意得:,ACB90,AB10cm,BC6cm,解得,符合题意,当时,存在点
20、P,使得PAPB;(2)由题意得:,【点睛】本题主要考查了勾股定理,解题的关键在于能够熟练掌握勾股定理2、CDcm【分析】由翻折易得DBAD,利用直角三角形ACD,勾股定理即可求得CD长【详解】解:由题意得DBAD;设CDxcm,则ADDB(8x)cm,C90,在RtACD中,根据勾股定理得:AD2CD2AC2,即(8x)2x236,解得x;即CDcm【点睛】此题主要考查勾股定理的应用,解题的关键是熟知翻折前后对应边相等,勾股定理的应用3、(1)见详解;(2)见详解;(3)见详解【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即
21、可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=,利用平移作出点C即可【详解】解:(1)以AB为边ABC是轴对称图形,ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点ABC如图也可画以AB为直角边,点A为直角顶点ABC如图;(2)根据勾股定理AB=,AB为一腰画等腰三角形,另一腰为,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰ABC2,点A向右3格再向下平移1格得C3,连结AC3,B
22、C3,得等腰ABC3, 点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰ABC6; (3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理,即,解得,根据勾股定理AC=,横1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质
23、,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键4、3【分析】根据平行线的性质以及角平分线的定义证明ADEAED,根据等角对等边,即可求得AE的长,在直角ABE中,利用勾股定理求得BE的长【详解】解:在矩形ABCD中,ADBC,ADBC10,ABCD6BC90,ADECED,ED平分AEC,AEDCED,AEDADE,ADAE10,在RtABE中,根据勾股定理,得BE8,ECBCBE1082,在RtDCE中,根据勾股定理,得DE2,设点A到DE的距离为h,则ADCDDEh,h3答:点A到DE的距离为3【点睛】本题考查勾股定理的综合应用,熟练掌握平行线的性质、角平分线的定义三角形面积公式及勾股定理是解题关键5、图见解析,蚂蚁爬行的最短路程是10cm【分析】画出展开图,连接AC,线段AC的长就是蚂蚁爬行的最短路程,求出展开后AD和CD长,再根据勾股定理求出AC即可【详解】解:如图,圆柱侧面展开后连接AC,线段AC的长就是蚂蚁爬行的最短路程, 因为圆柱的底面周长为16cm,高为6cm,所以图中,在RtADC中,由勾股定理得:,即蚂蚁爬行的最短路程是10cm【点睛】本题考查了勾股定理和立体图形展开图,解题关键是把立体图形展开,得到平面图形,根据两点之间,线段最短求解