《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系重点解析试题(含解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的顶点都是正方形网格中的格点,则( )ABCD2、图是第七届国际数学教育大会(ICME)会徽,在其主体
2、图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD3、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对4、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD5、如图,等腰RtABC中,C90,AC5,D是AC上一点,若tanDBA,则AD()A1B2CD26、已知,在矩形中,于,设,且,则的长为( )ABCD7、在直角ABC中,AC2,则tanA的值为( )ABCD8、如图,滑雪场有一坡角为20的滑道,滑雪道的长AC为100米,则BC的长为()米AB100cos20CD10
3、0sin209、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD10、在RtABC中,C90,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDtanB第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化经测量发现,当小明站在点A处时,塔顶D的仰角为37,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53,则观光塔CD的高度约为 _.(精确到0.1米,参考数值:tan37,tan53)2、如图,ABC中,BD
4、AB,BD、AC相交于点D,ADAC,AB2,ABC150,则DBC的面积是_3、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,且与交于点,连接,则下列结论:;其中正确的是_(填序号即可)4、计算:_5、如图,在平面直角坐标系中,有一个,ABO90,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_三、解答题(5小题,每小题10分,共计50分)1、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获
5、得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF30cm,CE:CD1:3,DCF45,CDF30,请根据以上信息,解决下列问题(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离 cm2、6tan230sin602tan453、如图,在中,(1)在线段上求作一点D,使得;(用尺规作图,不写作法,但应保留作图痕迹)(2)若,利用上述作图,求的值4、如图,在平面直角坐标系xOy中,正方形ABCD的边AB在x轴的正半轴上,顶点C,D在第一象限内,正比例函数y13x的图象经过点D,反比例函数的图象经过点D,且与边BC交于点E,连接OE,
6、已知AB3(1)点D的坐标是 ;(2)求tanEOB的值;(3)观察图象,请直接写出满足y23的x的取值范围;(4)连接DE,在x轴上取一点P,使,过点P作PQ垂直x轴,交双曲线于点Q,请直接写出线段PQ的长5、先化简,再求代数式()的值,其中atan60+2sin45-参考答案-一、单选题1、D【分析】根据题意和图形,可以得到AC、BC和AB的长,然后根据等面积法可以求得CD的长,从而可以得到的值【详解】解:作CDAB,交AB于点D,由图可得,AC,BC2,AB,解得,CD,sinBAC,故选:D【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答2、A【分析】在中
7、,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.3、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键4、D【分析】根据直角三角形斜边中线等于斜边一半求出AB,再根据三角函数的意义,可求出答案【详解】解:在ABC中,ACB90,点D为AB边的中点,ADBDCDAB,,又CD3,AB6,故选:D【点睛】本题考
8、查直角三角形的性质和三角函数,理解直角三角形的边角关系是得出正确答案的前提5、B【分析】过点D作,根据已知正切的定义得到,再根据等腰直角三角形的性质得到,再根据勾股定理计算即可;【详解】过点D作,tanDBA,是等腰直角三角形,AC5,在等腰直角中,由勾股定理得故选B【点睛】本题主要考查了解直角三角形,等腰直角三角形,勾股定理,准确计算是解题的关键6、B【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC,再利用勾股定理求出BC,然后根据矩形的对边相等可得AD=BC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=A
9、DE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=4=,由勾股定理得,BC=,四边形ABCD是矩形,AD=BC=故选:B【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键7、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中8、B【分析】首先根据坡角的概念得到,然后由的余弦值可得,代入AC的值求解即可【详解】解:滑道坡角为20,AC为100米
10、,故选:B【点睛】此题考查了解三角形的实际应用,解题的关键是熟练掌握锐角三角函数的表示方法9、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键10、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sinA,cosA,cosB和tanB即可【详解】解:由勾股定理得:,所以,即只有选项B正确,选项A、选项C、选项D都错误故选:B【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键二、填空题1、8.6米【分析】根据题意,利用锐角
11、三角函数解直角三角形即可【详解】解:由题意知,A=37,DBC=53,D=90,AB=5,在RtCBD中,tanDBC=,BC=,在RtCAD中,tanA=,即=tan37解得:CD=8.6,答:观光塔CD的高度约为8.6米【点睛】本题考查解直角三角形的实际应用,熟练掌握锐角三角函数解直角三角形的方法是解答的关键2、【分析】过点作,交延长线于点,先根据相似三角形的判定证出,根据相似三角形的性质可得,从而可得,再解直角三角形可得,从而可得,然后利用三角形的面积公式即可得【详解】解:如图,过点作,交延长线于点,解得,又,在中,即,解得,解得,则的面积是,故答案为:【点睛】本题考查了相似三角形的判定
12、与性质、解直角三角形等知识点,通过作辅助线,构造相似三角形是解题关键3、【分析】证ADEBCE和ADFCDF导角可知正确,利用三角函数表示出线段长,可得正确;证DCHBDH,可得正确,根据DCHHDC,可得错误【详解】解:四边形ABCD是正方形,点E是DC的中点,ABADBCCD,DECE,BCEADE90,ADEBCE(SAS)CBEDAE,BEAE,ADDC,ADFCDF45,DFDF,ADFCDF(SAS),DAEDCF,DCFCBE,CBE+CEB90,DCF+CEB90,CHE90,CFBE,故正确;点为边中点, ,DAEDCFCBE,设,则,则,ADFCDF(SAS),FACF,解
13、得,故正确;,DEHDEB,DEHBED,EDHDBE,DBE+CBE45,EDH+HDB45,HDBEBCECH,DCHBDH,即,故正确;,DAEDBH,DCHHDC,故错误, 故答案为:【点睛】本题考查了解直角三角形和相似三角形的判定与性质,解题关键是熟练运用相似三角形的性质进行推理证明4、【分析】根据特殊的三角函数值解答即可【详解】解:,故答案为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键5、2【分析】根据余弦的定义求出OB,根据题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30,OA1,OBOAcosAOB,由题意得,O
14、B12OB2,OB22OB122,OBn2n2n1,的长为:22020=22020,故答案为:22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键三、解答题1、(1)(40+40)cm;(2)(20)cm【分析】(1)过点F作FGDE于点G,分别利用三角函数求出FG和DG,然后求出CD,进而求出CE,即可求出DE,最后根据AC2DE即可求出AC;(2)作AHED延长线于H,根据AHACsin45求出AH即可【详解】解:(1)过点F作FGDE于点G,FGDFGC90,在RtDGF中,CDF30,FGFDsin303015(cm),D
15、GFDcos303015(cm),在RtCGF中,DCF45,CGFG15(cm),CDCG+DG15+15(cm),CE:CD1:3,CECD(15+15)5+5(cm),DEEC+CD5+5+15+1520+20(cm),DEBCAB,ACAB+BC2DE2(20+20)40+40(cm),即AC的长度为(40+40)cm(2)作AHED延长线于H,在RtAHC中,ACH45,AHACsin45(40+40)20+20(cm),故答案为:(20)【点睛】本题考查了解直角三角形应用题,一般步骤为(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数
16、学模型(2)将实际问题中的数量关系归结为解直角三角形的问题当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形(3)寻找直角三角形,并解这个三角形2、【分析】将,代入式子计算即可【详解】解:,原式,【点睛】题目主要考查特殊角三角函数的混合运算,熟记特殊角的三角函数值是解题关键3、(1)见解析;(2)【分析】(1)作的垂直平分线,交于点,则点即为所求;(2)根据(1)的结论可得,设,则,进而根据正切的定义即可求得答案【详解】解:(1)如图,作的垂直平分线,交于点,则点即为所求,连接 (2)设,则【点睛】本题考查了等腰三角形的性质,三角形的外角性质,垂直平分线的性质,正切的定
17、义,勾股定理,掌握以上知识是解题的关键4、(1);(2);(3);(4)或【分析】(1)根据D点纵坐标为3,代入正比例函数即可求解;(2)求出EB,根据正切的性质即可求解;(3)根据函数图象即可直接求解;(4)分当点P在线段AB上时和当点P在线段AB的延长线时,分别求出AP的长,故可求解【详解】解:(1)正方形ABCD的边长AB=3AD=3D点在正比例函数y13x上设D(x,3),代入y13x得3=3x解得x=1D故答案为:;(2)反比例函数的图象经过点D,k=13=3E点的横坐标为1+3=4E(4,y),代入得到EB=tanEOB=(3)如图,根据图象可得3时,图象在直线y=3的上方,x的取
18、值为0x1(4)当点P在线段AB上时,如图1,设AP=m,则PB=3-mSPDE=S梯形ABED-SADP-SPBE=解得m=3OP=1+3=4点P(4,0)当x=4时,Q(4,)PQ=当点P在线段AB的延长线时,如图2,设AP=m,则PB=m-3SPDE=SADP-S梯形ABED-SPBE=解m=5OP=1+5=6点P(6,0)当x=6时,Q(6,)PQ=综上,PQ的长为或【点睛】此题主要考查反比例函数与几何综合、解直角三角形,解题的关键是熟知待定系数法的应用、正切的性质5、;【分析】先根据分式的混合运算顺序和运算法则化简原式,再结合特殊锐角的函数值求出a的值,进而代入最简分式计算即可【详解】解:,=,=,tan60=,sin45=, ,原式【点睛】本题主要考查分式的化简求值及特殊锐角的三角函数值,二次根式乘除混合运算解题的关键是掌握分式的混合运算顺序和运算法则,二次根式乘除混合运算法则及特殊锐角的三角函数值