中考数学2022年河北石家庄市晋州市中考数学历年真题练习-(B)卷(含答案及详解).docx

上传人:知****量 文档编号:28195761 上传时间:2022-07-26 格式:DOCX 页数:28 大小:1.10MB
返回 下载 相关 举报
中考数学2022年河北石家庄市晋州市中考数学历年真题练习-(B)卷(含答案及详解).docx_第1页
第1页 / 共28页
中考数学2022年河北石家庄市晋州市中考数学历年真题练习-(B)卷(含答案及详解).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《中考数学2022年河北石家庄市晋州市中考数学历年真题练习-(B)卷(含答案及详解).docx》由会员分享,可在线阅读,更多相关《中考数学2022年河北石家庄市晋州市中考数学历年真题练习-(B)卷(含答案及详解).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北石家庄市晋州市中考数学历年真题练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果,且,那么的值一定是( ) A正数B负数C0D

2、不确定2、如图,已知于点B,于点A,点E是的中点,则的长为( )A6BC5D3、如图,三角形是直角三角形,四边形是正方形,已知正方形A的面积是64,正方形B的面积是100,则半圆C的面积是A36BCD4、不等式组的解集在数轴上表示正确的是()ABCD5、关于x,y的方程组的解满足xy6,则m的最小整数值是()A1B0C1D26、在,中,最大的是( )ABCD7、石景山某中学初三班环保小组的同学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )ABCD8、若是最

3、小的自然数, 是最小的正整数,是绝对值最小的有理数,则的值为( ) A-1B1C0D29、如图所示,AB,CD相交于点M,ME平分,且,则的度数为( )ABCD10、如图,点B和点C是对应顶点,记 线 封 密 内 号学级年名姓 线 封 密 外 ,当时,与之间的数量关系为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为_2、边长为a、b的长方形,它的周长为14,面积为10,则的值为_3、已知圆锥的底面周长为,母线长为则它的侧面展开图的圆心角为_度4、如图,在中,F是边上的中点,则_1(

4、填“”“=”或“”)5、双曲线,当时,随的增大而减小,则_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:;(2)解方程:2、数轴上点A表示8,点B表示6,点C表示12,点D表示18如图,将数轴在原点O和点B,C处各折一下,得到一条“折线数轴”在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离例如,点A和点D在折线数轴上的和谐距离为个单位长度动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方

5、向向终点A运动其中一点到达终点时,两点都停止运动设运动的时间为t秒(1)当秒时,M、N两点在折线数轴上的和谐距离为_;(2)当点M、N都运动到折线段上时,O、M两点间的和谐距离_(用含有t的代数式表示);C、N两点间的和谐距离_(用含有t的代数式表示);_时,M、N两点相遇;(3)当_时,M、N两点在折线数轴上的和谐距离为4个单位长度;(4)当_时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等3、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中, 线 封 密 内 号学级年名姓 线 封 密 外 (1)求该抛物线的函数表达式;(2)点,为直线下方抛物线上任意两点,且

6、满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的坐标,并任选其中一个点的坐标,写出求解过程4、如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,抛物线的对称轴与直线BC交于点M,与x轴交于点N(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由(3)D为CO的中点

7、,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程5、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量(件)与销售单价(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价(元)406080日销售量(件)806040(1)求公司销售该商品获得的最大日利润;(2)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过元,在日销售量(件)与销售单价(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润

8、是1500元,求的值-参考答案-一、单选题1、A【分析】根据有理数的加减法法则判断即可【详解】解:a0,b0,且|a|b|,-b0,|a|-b|,=a+(-b)0故选:A 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查有理数的加减法法则用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号2、B【分析】延长交于点F,根据已知条件证明,得出,根据勾股定理求出的长度,可得结果【详解】如图,延长交于点F,点E是的中点,在和中,在中,点E是的中点,故选:B【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性

9、质是解本题的关键3、B【分析】根据正方形的性质分别求出DE,EF,根据勾股定理求出DF,根据圆的面积公式计算【详解】解:正方形A的面积是64,正方形B的面积是100,由勾股定理得,半圆C的面积,故选B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么4、C【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可【详解】解不等式得:x2,解不等式得:x1,不等式组的解集为1x2,在数轴上表示为:故选C【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解答

10、此题的关键5、B【解析】【分析】先解方程组,得出x,y的值,再把它代入x+y6即可得出m的范围由此即可得出结论【详解】解方程组,得:x+y6,5m2+(49m)6,解得:m1,m的最小整数值是0故选B【点睛】本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组6、B【分析】根据绝对值及乘方进行计算比较即可【详解】,中,最大的是故选:B【点睛】本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键7、D【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所

11、占面积即可求出【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为100.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为402.5=100m2故选D 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法8、C【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值【详解】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,所

12、以a=0,b=1,c=0,所以a-bc=0-10=0,故选:C【点睛】本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是09、C【分析】先求出,再根据角平分线的性质得到,由此即可求解【详解】解:,ME平分,故选C【点睛】本题主要考查了角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解10、B【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得BAO=CAD,然后求出BAC=,再根据等腰三角形两底角相等求出ABC,然后根据两直线平行,同旁内角互补表示出OBC,整理即可【详解】,在中,整理得,故选:B【点睛】本题考查了全等三角形的性

13、质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 二、填空题1、【分析】根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数【详解】最大扇形的圆心角的度数=360=200故答案为200【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等2、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可【详解】解:依题意:2a+2b=14,ab=10,则a+b=7a2b+ab2=ab(

14、a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键3、【分析】根据弧长=圆锥底面周长=4,弧长=计算【详解】由题意知:弧长=圆锥底面周长=4cm,=4,解得:n=240故答案为240【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系4、【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,在中, 线 封 密 内 号学级年名姓 线 封 密 外 ,F是边上的中点,故答案为:【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键5、【分析】根据反比例

15、函数的定义列出方程求解,再根据它的性质决定解的取舍【详解】根据题意得:,解得:m=2故答案为2【点睛】本题考查了反比例函数的性质对于反比例函数y=,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大三、解答题1、(1)-4;(2)【分析】(1)原式先算乘方及绝对值,再算乘除,最后算减法即可得到结果;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解【详解】解:(1)原式=16(-8)-(30-30)=-2-(12-10)=-2-2=-4;(2)去分母得:3(3-x)=2(x+4),去括号得:9-3x=2x+8,移

16、项得:-3x-2x=8-9,合并得:-5x=-1,解得:x=【点睛】此题考查了解一元一次方程,以及有理数的混合运算,解方程的步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解2、(1)12(2)2(t-2);3t-6;4.4(3)当t=5.2或3.6秒时,M、N两点在折线数轴上的和谐距离为4个单位长度;(4)当t=3.2或8秒时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等【分析】(1)先求得点M表示的数为0,点N表示的数为12,据此即可求解; 线 封 密 内 号学级年名姓 线 封 密 外 (2)先求得点M表示的数为2(t-2),点N表示的数为18-

17、3t,据此即可求解;(3)根据题意列出方程|2(t-2) - (18-3t)|=4,即可求解;(4)分点M在OA上,OBC上,CD上三种情况讨论,列出方程求解即可(1)解:t=2时,点M表示的数为4t-8=0,点N表示的数为18-3t=12,|MN|=|12-0|=12;故答案为:12;(2)点N到达原点的时间为(秒),点M、N都运动到折线段OBC上,即2t6,点M表示的数为2(t-2),点N表示的数为18-3t,O、M两点间的和谐距离|OM|=2(t-2);C、N两点间的和谐距离|CN|=|12-(18-3t)|=3t-6;当2(t-2)= 18-3t时,M、N两点相遇,解得:t=4.4,当

18、t=4.4秒时,M、N两点相遇;故答案为:2(t-2);3t-6;4.4;(3)当点M在OA上或在CD上即0t2或t时,由(1)知,不存在和谐距离为4个单位长度;当点M运动到折线段OBC上,即2t8,依题意得:|2(t-2) - (18-3t)|=4,解得:t=5.2或t=3.6,当t=5.2或3.6秒时,M、N两点在折线数轴上的和谐距离为4个单位长度;(4)当点M在OA上即0t2时,点M表示的数为4t-8,点N表示的数为18-3t,依题意得:0-(4t-8)=18-3t-6,解得:t=-4(不合题意,舍去);当点M在折线段OBC上,即2t8时,点M表示的数为2(t-2),点N表示的数为18-

19、3t,依题意得:2(t-2)-0=|18-3t-6|,解得:t=3.2或t=8;当点M在CD上即8t时,点M表示的数为4(t-8),点N表示的数为18-3t,依题意得:4(t-8)-0=6-(18-3t),解得:t=20(不合题意,舍去);综上,当t=3.2或8秒时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用3、(1)抛物线表达式为;(2)当时,S四边形PQDC最大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)

20、利用待定系数法求抛物线解析式抛物线过,两点,代入坐标得: 线 封 密 内 号学级年名姓 线 封 密 外 ,解方程组即可;(2)根据点的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,求出点F(

21、),(),当点F()时,点G、F、E、B坐标满足,得出 G(),点F()时,点G3、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,QD= 线 封 密 内 号学级年名姓 线 封 密 外 S四边形PQDC=

22、,当时,S四边形PQDC最大=;(3)AB=,抛物线向右平移4个单位,再向下平移2个单位, ,点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,或,点F(),(),当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3(); 线 封 密 内 号学级年名姓 线 封 密 外 四边形BEFG为菱形,BE=BF,根据勾股定理,或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,解

23、得,G2(),综合所有符合条件的点的坐标()或()或()或()【点睛】本题考查待定系数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题4、(1)(2)存在,点或(3),【分析】(1)用待定系数法即可求解;(2)当CPM为直角时,则PCx轴,即可求解;当PCM为直角时,用解直角三角形的方法求出PN=MN+PM=,即可求解;(3)作点C关于函数对称轴的对称点C(2,8),作点D关于x轴的对称点D(0,-4),连接 线 封 密 内

24、 号学级年名姓 线 封 密 外 CD交x轴于点E,交函数的对称轴于点F,则点E、F为所求点,进而求解(1)由题意得,点A、B、C的坐标分别为(-2,0)、(4,0)、(0,8),设抛物线的表达式为y=ax2+bx+c,则,解得,故抛物线的表达式为y=-x2+2x+8;(2)存在,理由:当CPM为直角时,则以P、C、M为顶点的三角形与MNB相似时,则PCx轴,则点P的坐标为(1,8);当PCM为直角时,在RtOBC中,设CBO=,则,则,在RtNMB中,NB=4-1=3,则,同理可得,MN=6,由点B、C的坐标得,则,在RtPCM中,CPM=OBC=,则,则PN=MN+PM=,故点P的坐标为(1

25、,),故点P的坐标为(1,8)或(1,);(3)D为CO的中点,则点D(0,4),作点C关于函数对称轴的对称点C(2,8),作点D关于x轴的对称点D(0,-4),连接CD交x轴于点E,交函数的对称轴于点F,则点E、F为所求点, 线 封 密 内 号学级年名姓 线 封 密 外 理由:G走过的路程=DE+EF+FC=DE+EF+FC=CD为最短,由点C、D的坐标得,直线CD的表达式为y=6x-4,对于y=6x-4,当y=6x-4=0时,解得,当x=1时,y=2,故点E、F的坐标分别为、(1,2);G走过的最短路程为CD= 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利

26、用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系5、(1)当销售单价是75元时,最大日利润是2025元;(2)【分析】(1)先求解商品的日销售量(件)与销售单价(元)的函数关系式,再利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再利用二次函数的性质可得答案;(2)先利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再求解当利润为元时的值,再分两种情况讨论即可.(1)解:设商品的日销售量(件)与销售单价(元)是 解得: 所以商品的日销售量(件)与销售单价(元)是 设公司销售该商品获得的日利润为元,抛物线开口向下,函数有最大值,当时,答:当销售单价是75元时,最大日利润是2025元(2)解:,当时,解得,有两种情况,时,在对称轴左侧,随的增大而增大,当时,时,在范围内,这种情况不成立, 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,列二次函数的关系式,二次函数的性质,一元二次方程的解法,掌握“该商品获得的最大日利润等于每件商品的利润乘以销售数量”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁