《知识点详解人教版八年级数学下册第十八章-平行四边形难点解析试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《知识点详解人教版八年级数学下册第十八章-平行四边形难点解析试题(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知菱形的边长为6,一个内角为60,则菱形较长的对角线长是()ABC3D62、如图,在ABC中,AC=BC=
2、8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D43、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或24、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形下面是某个合作小组的4位同学拟定的方案,其中正确的是( )A测量对角线是否互
3、相平分B测量两组对边是否分别相等C测量其内角是否均为直角D测量对角线是否垂直5、下列条件中,能判定四边形是正方形的是( )A对角线相等的平行四边形B对角线互相平分且垂直的四边形C对角线互相垂直且相等的四边形D对角线相等且互相垂直的平行四边形6、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D487、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D138、如图,OAOB,OB4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在
4、OA上取一点D,使CDO45,当P在射线OA上自O向A运动时,PD的长度的变化()A一直增大B一直减小C先增大后减小D保持不变9、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OBEB,点G为BD上一点,满足EGFG,若DBC30,则OGE的度数为()A30B36C37.5D4510、如图,矩形ABCD中,AC交BD于点O,且AB=24,BC=10,将AC绕点C顺时针旋转90至CE连接AE,且F、G分别为AE、EC的中点,则四边形OFGC的面积是( )A100B144C169D225第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1
5、、如图,将n个边长都为1的正方形按如图所示摆放,点A1,A2,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为_2、如图,正方形ABCD的面积为18,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _3、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_4、如图,在矩形中,点是线段上的一点(不与点,重合),将沿折叠,使得点落在处,当为等腰三角形时,的长为_5、如图,在直角三角形ABC中,B=90,点D是AC边上的一点,连接BD,把CBD沿着BD翻
6、折,点C落在AB边上的点E处,得到EBD,连接CE交BD于点F,BG为EBD的中线若BC=4,EBG的面积为3,则CD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE2、如图,等腰ABC中,ABAC,BAC90,BE平分ABC交AC于E,过C作CDBE于D,(1)如图1,求证:CDBE(2)如图2,过点A作AFBE,写出AF,BD,CD之间的数量关系并说明理由3、如图,在ABCD中,对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O求证:四边形AECF是菱形(小海的证明过程)证明:E
7、F是AC的垂直平分线,OAOC,OEOF,EFAC,四边形AECF是平行四边形又EFAC,四边形AECF是菱形(老师评析)小海利用对角线互相平分证明了四边形AECF是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了(挑错改错)(1)请你帮小海找出错误的原因;(2)请你根据小海的思路写出此题正确的证明过程4、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF5、如图,在长方形ABCD中,AB3,BC4,点E是BC边上一点,连接AE,将B沿直线AE折叠,使点B落在点处(1)如图1,当点E与点C重合时,与AD交于点F,求证:FAFC;(2)
8、如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长-参考答案-一、单选题1、B【解析】【分析】根据一个内角为60可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解【详解】解:如图,菱形ABCD,ABC=60,AB=BC,ACBD,OB=OD,ABC是等边三角形,菱形的边长为6,AC6,AOAC3,在RtAOB中,BO3,菱形较长的对角线长BD是:236故选:B【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长2、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角
9、的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形
10、中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键3、D【解析】【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP
11、全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用4、C【解析】【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩形的对角线互相相等且平分,所以垂直与否
12、与矩形的判定无关,故错误故选:C【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键5、D【解析】【分析】根据正方形的判定定理进行判断即可【详解】解:A、对角线相等的平行四边形是矩形,不符合题意;B、对角线互相平分且垂直的四边形是菱形,不符合题意;对角线相等且互相垂直的平行四边形是正方形,故C选项不符合题意;D选项符合题意;故选:D【点睛】本题考查了正方形的判定,熟知正方形的判定定理是解本题的关键6、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在
13、和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键7、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键8、D【解析】【分析】过点作于,于,先根据矩形的判定与性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,然后根据等腰直角三角形的判定与性质可得
14、,最后根据线段的和差、等量代换即可得出结论【详解】解:如图,过点作于,于,则四边形是矩形,是等腰直角三角形,在和中,是等腰直角三角形,的长度保持不变,故选:D【点睛】本题考查了矩形的判定与性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造矩形和全等三角形是解题关键9、C【解析】【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案【详解】矩形ABCD OBEB, 点O为对角线BD的中点, 和中 EGFG,即 故选:C【点睛】本题考查了矩
15、形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解10、C【解析】【分析】先根据矩形的性质、三角形中位线定理可得,再根据平行四边形的判定可得四边形为平行四边形,然后根据旋转的性质可得,从而可得,最后根据正方形的判定可得四边形为正方形,由此即可得【详解】解:四边形为矩形,分别为的中点,四边形为平行四边形,又绕点顺时针旋转,平行四边形为正方形,四边形的面积是,故选:C【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形中位线定理等知识点,熟练掌握正方形的判定与性质是解题关键二、填空题1、【
16、解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和【详解】解:由题意可得一个阴影部分面积等于正方形面积的,即是,n个这样的正方形重叠部分(阴影部分)的面积和为:故答案为:【点睛】本题考查了正方形的性质,解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积2、【解析】【分析】由正方形的对称性可知,PBPD,当B、P、E共线时PD+PE最小,求出BE即可【详解】解:正方形中B与D关于AC对称,PBPD,PD+PEPB+PEBE,此时PD+PE最小,正方形
17、ABCD的面积为18,ABE是等边三角形,BE3,PD+PE最小值是3,故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键3、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在RtCEF中,利用勾股定理列方程求解和三角形的面积公式解答即可【详解】解:四边形ABCD是矩形AB=CD=9,BC=ADABBF54,BF=12 在RtABF中,AB=9,BF=12,由勾股定理得, BC=AD=AF=15,CF=BC-BF=15-12=3设DE=x,则CE=9-x,EF=
18、DE=x则x2=(9-x)2+32,解得,x=5DE=5 EC=DC-DE=9-5=4 FCE的面积=43=6【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键4、或【解析】【分析】根据题意分,三种情况讨论,构造直角三角形,利用勾股定理解决问题【详解】解:四边形是矩形,将沿折叠,使得点落在处,设,则当时,如图过点作,则四边形为矩形,在中在中即解得当时,如图,设交于点,设垂直平分在中即在中,即联立,解得当时,如图,又垂直平分垂直平分此时重合,不符合题意综上所述,或故答案为:或【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质与
19、判定,垂直平分线的性质,分类讨论是解题的关键5、【解析】【分析】由折叠的性质可得,由勾股定理可得,根据题意可得,求得的长度,即可求解【详解】解:由折叠的性质可得,为等腰直角三角形,为的中点,由勾股定理可得,BG为EBD的中线,EBG的面积为3,解得由勾股定理得:故答案为:【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解三、解答题1、见解析【分析】根据菱形的性质可得AB=BC=CD=AD,A=C,再由BE=BF,可推出AE=CF,即可利用SAS证明ADECDF得到DE=DF,则DEF=DFE【详解】解:四边形ABCD是菱形,AB=BC=CD=AD,
20、A=C,BE=BF,AB-BE=BC-BF,即AE=CF,ADECDF(SAS),DE=DF,DEF=DFE【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质2、(1)证明见解析;(2)BD= CD+2AF,理由见解析【分析】(1)延长BA与CD的延长线交于点G,先证明ABEACG得到BE=CG,由BD是ABC的角平分线,得到GBD=CBD,即可证明BDGBDC得到CD=GD,则;(2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,则,再由BAC=90,AB=AC,得到ABC=45,根
21、据BD平分ABC,即可推出AHF=ABH+BAH=45,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF【详解】解:(1)如图所示,延长BA与CD的延长线交于点G,BAC=90,CAG=90,CDBE,EDC=GDB=BAE=90,又AEB=DEC,ABE=DCE,在ABE和ACG中,ABEACG(ASA),BE=CG,BD是ABC的角平分线,GBD=CBD,在BDG和BDC中,BDGBDC(ASA),CD=GD,; (2)BD= CD+2AF,理由如下:如图所示,连接AD,取BE中点H,连接AH,由(1)得CD=GD,BAE和CAG都是直角三角形,
22、H为BE中点,D为CG中点,ABH=BAH,BAC=90,AB=AC,ABC=45,又BD平分ABC,ABH=BAH=22.5,AHF=ABH+BAH=45,AFDH,HF=DF,AFH=90,HAF=45,AF=HF,DH=2AF,BD=BH+HD=BH+2AF=CD+2AF【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件3、(1)见解析;(2)见解析【分析】(1)由垂直平分线的性质可求解;(2)由“”可证,可得,且,由菱形的判定可证四边形是菱形【详解】解:(1)是的垂直平分线,
23、不能得出;(2)四边形是平行四边形,是的垂直平分线,且,且四边形是平行四边形四边形是菱形【点睛】本题考查了菱形的判定,全等三角形的判定和性质,线段垂直平分线的性质,平行四边形的性质,解题的关键是熟练运用线段垂直平分线的性质4、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.5、(1)见解析;(2)CE=【分析】(1)根据平行线的性质及折叠性质证明FAC=FCA即可(2)由
24、题意可得,根据勾股定理求出AC=5,进而求出BC=2,设CE= x然后在Rt中,根据勾股定理EC2=2+2列方程求解即可;【详解】解:(1)如图1,四边形ABCD是矩形,ADBC,FAC=ACB,ACB=ACF,FAC=FCA,FA=FC (2),如图2, 设CE= x,四边形ABCD是矩形,B=90,AC2=AB2+BC2= 32+42=25,AC=5,由折叠可知:,=5-3=2,在Rt中,EC2=2+2x2=(4-x)2+22,x=,CE=【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型