《精品解析2022年人教版九年级数学下册第二十九章-投影与视图专项训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十九章-投影与视图专项训练试题(名师精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十九章-投影与视图专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、全运会颁奖台如图所示,它的主视图是( )ABCD2、下列四个几何体中,主视图与俯视图不同的几何体是( )A
2、BCD3、如图所示的几何体,其左视图是( )ABCD4、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为()mA2B4C6D85、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是()ABCD6、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )ABCD7、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2mn()A10B11C12D138、如图所示的几何体,从上面看到的形状图是()ABCD9、如图是由6
3、个大小相同的小正方体组成的几何体,它的左视图是()ABCD10、已知一个几何体如图所示,则该几何体的左视图是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB_米2、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_3、日晷是我国古代测定时刻的仪器,它是利用_来测定时刻的4、在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为_
4、5、由n个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n的最大值是_三、解答题(5小题,每小题10分,共计50分)1、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数2、如图,是公园
5、的一圆形桌面的主视图,表示该桌面在路灯下的影子(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离3、已知,如图,AB和DE是直立在地面上的两根立柱,AB2m,某一时刻AB在太阳光下的投影BC1m(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF1.5m,请你计算DE的长4、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图5、如图是用1
6、0块完全相同的小正方体搭成的几何体(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用_块小正方体搭成的-参考答案-一、单选题1、C【分析】主视图是从前面先后看得到的图形,根据主视图对各选项一一分析即可【详解】解:主视图是从前面先后看得到的图形,是C故选C【点睛】本题考查主视图,掌握三视图的特征是解题关键2、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符
7、合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意故选:C【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同3、B【分析】根据左视图的定义(一般指由物体左边向右做正投影得到的视图)求解即可【详解】解:由左视图的定义可得:左视图为一个正方形,由于正方体内部有一个圆柱体,根据其方向可得左视图为:,故选:B【点睛】题目主要考查三视图的作法,理解三视图的定义是解题关键4、B【分析】根据题意,画出示意图,易得:EDCFDC,进而可得,即DC2EDFD,代入数据可得答案【详解】解:根据题意,作EFC,树高为CD,且
8、ECF90,ED2m,FD8m;E+F90,E+ECD90,ECDF,EDCFDC,即DC2EDFD2816,解得CD4m故选:B【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键5、B【分析】根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形【详解】解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,故选B【点睛】本题考查从不同方向看几何体做此类题,最好是逐列分析每一列中正方形的个数然后组合即可6、A【分析】根据主视图的概念求解即可【详解】解:由题意可得,该
9、几何体的主视图是:故选:A【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念7、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,m4+3+29,n4+2+17,2mn29711故选B【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数8、B【分析】找出从几何体的上面看所
10、得到的视图即可【详解】解:从上面看到的形状图是,故选:B【点睛】此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键9、D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可【详解】解:从物体左面看,是左边2个正方形,右边1个正方形故选:D.【点睛】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项10、B【分析】根据几何体左视图的概念求解即可【详解】解:由左视图的概念可得,这个几何体的左视图为:故选:B【点睛】此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视
11、图的概念左视图,一般指由物体左边向右做正投影得到的视图二、填空题1、6【解析】【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答【详解】解: ,当王华在CG处时,RtDCGRtDBA,即,当王华在EH处时,RtFEHRtFBA,即,CGEH1.5米,CD1米,CE3米,EF2米,设ABx,BCy,即,即2(y+1)y+5,解得:y3,则,解得,x6米即路灯A的高度AB6米【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系
12、求出所需要的线段,再求公共边的长度2、【解析】【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可【详解】由三视图可知,几何体是由圆柱体和圆锥体构成,圆柱和圆锥的底面直径均为2,高分别为4和1,圆锥和圆柱的底面积为,故该几何体的体积为:4+,故答案为:【点睛】本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形3、日影【解析】【分析】根据日晷的工作原理解答即可【详解】解:晷是按照日影测定时刻的仪器,晷长即为所测量影子的
13、长度故答案是:日影【点睛】本题考查了数学常识,此类问题要结合实际问题来解决,生活中的一些数学常识要了解4、【解析】【分析】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为4,进而求得母线长,据此求得圆锥的侧面积【详解】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为,则母线长为,所以这个模型的侧面积为故答案为【点睛】本题考查了根据三视图确定几何体,求圆锥的侧面,牢记公式是解题的关键5、13【解析】【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案【详解】综合主视
14、图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13 故答案为:13【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键三、解答题1、(1)见解析;(2)见解析【分析】(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形
15、画出图形即可;(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可【详解】解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,如图所示:(2)从正面
16、看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或两个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2根据题意,填图如下:【点睛】本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键2、(1)见解析;(2)路灯O与地面的距离为3m
17、【分析】(1)由题意连接 并延长,两条线的交点就是灯光的位置;(2)作OFMN交AB于E,证明OABOMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为所求; (2)作OFMN交AB于E,如图,ABm,EFm,MN2m,OABOMN,AB:MNOE:OF, 即,解得OF3(m)经检验:符合题意答:路灯O与地面的距离为3m【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.3、(1)画图见解析;(2)DE=3米【分析】(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF(2)太阳
18、光属于平行光源,故,故,所以DE=3.【详解】(1)如图所示:(2)DE/ACEFD=BCADE=3米【点睛】本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题4、见解析【分析】利用三视图的画法画出图形即可【详解】根据三视图的画法,画出相应的图形如下:【点睛】本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键5、(1)见解析;(2)9或11【分析】(1)根据三视图的定义画图即可;(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,由此即可得到答案【详解】(1)画出的三视图如图所示:(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,这个几何体还可以由9个或11个小正方体组成【点睛】本题主要考查了画小立方体组成的几何体的三视图,由三视图求小立方体个数,解题的关键在于能够正确观察图形求解