《中考特训浙教版初中数学七年级下册第五章分式课时练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《中考特训浙教版初中数学七年级下册第五章分式课时练习练习题(含详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式课时练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x2、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD3、一种病毒的长度约为0.000043mm,用科学计数法表示数0.000043正确的是( )ABCD4、等于( )ABCD5、若,则( )ABCD6、在研制新冠肺炎疫苗过程中,某细菌的直径大小为米,用科学记数法表示这
2、一数字,正确的是( )ABCD7、已知实数,满足:,则的值为( )A1BC7D8、31等于()AB3CD39、要使分式有意义,x的取值应满足()Ax1Bx2Cx1且x2Dx1或x210、下列说法正确的是( )A没有意义B任何数的0次幂都等于1CD若,则二、填空题(5小题,每小题4分,共计20分)1、用科学记数法表示:0.00002021_2、若(m3)01,则m的取值为_3、已知分式的值是整数,则满足条件的所有整数的和为_4、计算:2223_5、某种生物细胞的直径约为0.000000076米,用科学记数法表示为 _米三、解答题(5小题,每小题10分,共计50分)1、(1)计算:;(2)因式分解
3、:2x332x2、计算:3、某车行经营A,B两种型号的电瓶车,已知A型车和B型车的进货价格分别为1500元和2500元(1)该车行去年A型车销售总额为8万元,今年A型车每辆售价比去年降低200元,若今年A型车的销售量与去年相同,则A型车销售额将比去年减少10%,求去年每辆A型车的售价(2)今年第三季度该车行计划用3万元再购进A,B两种型号的电瓶车若干辆,问:一共有几种进货方案;在(1)的条件下,已知每辆B型车的利润率为24%,中哪种方案利润最大,最大利润是多少?(利润售价成本,利润率利润成本100%)4、计算:(1)(3.14)0()2+|2|;(2)(2x+1)2x(4x1)5、课堂上,李老
4、师给大家出了这样一道题:“当、时,求代数式的值”小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程-参考答案-一、单选题1、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法2、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学
5、记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值3、C【分析】科学记数法的形式是: ,其中10,为整数所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数本题小数点往右移动到4的后面,所以【详解】解:0.000043 故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响4、A【分析】直接利用负整数指数幂的性质化简得出答案【详解】解:3-1=,故选:A【点睛】此题主要考查了负整数指数幂的性质,正确
6、掌握相关性质是解题关键5、A【分析】先根据有理数的乘方,零指数幂计算,然后比较大小,即可求解【详解】解:,故选:A【点睛】本题主要考查了有理数的乘方运算,零指数幂,有理数的比较大小,熟练掌握有理数的乘方运算法则,零指数幂法则是解题的关键6、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键7、B【分析】根据移项可得,将化为,根据非负数的性质确定的值,进而求得的值,代入代
7、数式求解即可【详解】将移项可得, 解得代入解得故选B【点睛】本题考查了完全平方公式的应用,非负数的性质,负整指数幂的计算,根据完全平方公式变形是解题的关键8、A【分析】根据负整指数幂的运算法则()即可求解.【详解】解:因为(),所以,故选A【点睛】本题主要考查负整指数幂的运算法则,解决本题的关键是要熟练掌握负整指数幂的运算法则.9、C【分析】根据分式有意义,分母不等于0列式计算即可得解【详解】解:根据题意得,(x-1)(x-2)0,解得x1且x2故选:C【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分
8、子为零且分母不为零10、D【分析】根据除0之外的任何数的零次幂都等于1即可判定A、B、D,根据幂的混合运算法则即可判断C【详解】解:A、,有意义,故此选项不符合题意;B、除0外的任何数的0次幂都等于1,故此选项不符合题意;C、,故此选项不符合题意;D、若,则,故此选项符合题意;故选D【点睛】本题主要考查了幂的运算,零指数幂,解题的关键在于能够熟练掌握相关计算法则二、填空题1、【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解【详解】解:故答案为:【点睛】本题考
9、查用科学记数法表示较小的数,熟练掌握一般形式为 ,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键2、m3【分析】利用零指数幂的法则判断即可确定出的值【详解】解:,则故答案为:【点睛】此题考查了零指数幂,熟练掌握零指数幂的法则是解本题的关键3、5【分析】先由分式有意义的条件可得,再化简原分式可得结果为,由原分式的值为整数可得:,再解方程并检验可得答案.【详解】解:,分式的值是整数,是整数,符合题意的,0,3,故答案为:5【点睛】本题考查的是分式的值为整数,理解分式的值为整数时对分式的分子与分母的要求是解题的关键.4、2【分析】根据同底数幂的除法法则,即可求解【详解】解:
10、2223=22-(-3)=2,故答案是:2【点睛】本题主要考查同底数幂的除法法则,负整数指数幂,熟练掌握同底数幂相除,底数不变,指数相减,是解题的关键5、7.6108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000000076米7.6108米,故答案为:7.6108【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题1、(1)1;(2)【分析】(1)利
11、用算术平方根、零指数幂以及负整数指数幂的运算法则解决此问题(2)先用提公因式法,再用公式法进行因式分解【详解】解:(1)(2)【点睛】本题主要整数指数幂、因式分解,熟练掌握整数指数幂、因式分解是解决本题的关键2、1【分析】直接利用零指数幂的性质、立方根的性质、算术平方根的性质分别化简得出答案【详解】原式4121【点睛】本题主要考查了零指数幂、立方根的、算术平方根,解题的关键在于能够熟练掌握相关计算法则3、(1)去年每辆A型车的售价为2000元;(2)一共有3种进货方案;方案3的利润最大,最大利润是6900元【分析】(1)设去年每辆A型车的售价为x元,则今年每辆A型车的售价为(x200)元,利用
12、数量总价单价,结合今年A型车的销售量与去年相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A型车m辆,B型车n辆,利用总价单价数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出各进货方案;利用总利润每辆的利润销售数量,即可分别求出选择各方案的总利润,比较后即可得出结论【详解】解:(1)设去年每辆A型车的售价为x元,则今年每辆A型车的售价为(x200)元,依题意得:,解得:x2000,经检验,x2000是原方程的解,且符合题意答:去年每辆A型车的售价为2000元;(2)设购进A型车m辆,B型车n辆,依题意得:1500m2500n30000,m20n又m,
13、n均为正整数,或或,一共有3种进货方案,方案1:购进A型车15辆,B型车3辆;方案2:购进A型车10辆,B型车6辆;方案3:购进A型车5辆,B型车9辆选择方案1的利润为(20002001500)15250024%36300(元);选择方案2的利润为(20002001500)10250024%66600(元);选择方案3的利润为(20002001500)5250024%96900(元)630066006900,方案3的利润最大,最大利润是6900元【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程;
14、利用总利润每辆的利润销售数量,求出选择各方案的总利润4、(1)-1;(2)5x+1【分析】(1)先分别化简零指数幂,负整数指数幂,绝对值,然后再计算;(2)整式的混合运算,先算乘方,单项式乘多项式,然后再算加减【详解】解:(1)原式=1-4+2=-1;(2)原式=4x2+4x+1-4x2+x=5x+1【点睛】本题考查零指数幂,负整数指数幂,整式的混合运算,掌握运算法则准确计算是解题关键5、当时,原式;当时,原式;当时,原式【分析】根据分式的混合运算法则化简,然后代入求值即可【详解】原式,当时,原式;当时,原式;当时,原式【点睛】本题考查了分式的化简求值,熟练运用分式的混合运算法则是解本题的关键