《2022年浙教版初中数学七年级下册第四章因式分解同步训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解同步训练练习题(无超纲).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)22、的值为( )A.B.C.D.3533、下列各式变形中,是因式分解的是( )A.B.C.D.4、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m
2、2)D.3a(ab)2(ab)(ab)2(2ab)5、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.56、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+17、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定8、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.9、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.10、若,则的值为( )A.B.
3、C.D.11、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)12、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.13、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.14、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b1215、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解二、填空题(10小题,每小题4分,共计40分)1、因式分
4、解:_2、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_3、已知,则_4、多项式的公因式是_5、因式分解:_6、分解因式:3a(xy)2b(yx)_7、若,则的值是_8、已知a2b5,则代数式a24ab4b25的值是_9、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_10、分解因式:x41_三、解答题(3小题,每小题5分,共计15分)1、分解因式:(x2y)(2x3y)2(2yx)(5xy)2、因式分解:m3(m1)-4m(1m)23、(1)计算:(2)因式分解:-参考答案-一、单选题1、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2
5、)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.3、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误
6、;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.4、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确
7、确定公因式是求解的关键.5、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.6、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n
8、+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.7、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N|-1(
9、-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.8、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.9、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x
10、2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.10、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.11、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分
11、解为止.12、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.13、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故C符合题意;不能用完全平方公式,
12、故D不符合题意;故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.14、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.15、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运
13、算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.二、填空题1、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.2、12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式
14、对解题非常重要.3、18【分析】本题要求代数式a3b-2a2b2+ab3的值,而代数式a3b-2a2b2+ab3恰好可以分解为两个已知条件ab,(a-b)的乘积,因此可以运用整体的数学思想来解答.【详解】解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2当a-b=3,ab=2时,原式=232=18,故答案为:18【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.4、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的
15、公共部分是解题的关键.5、【分析】先提公因式4,再利用平方差公式分解.【详解】解:=故答案为:.【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键.6、【分析】根据提公因式法因式分解即可.【详解】3a(xy)2b(yx)=故答案为:【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.7、16【分析】将代数式因式分解,再将已知式子的值代入计算即可.【详解】解:,=16故答案为:16.【点睛】此题考查代数式求值,因式分解的应用,注意整体代入思想是解答此题的关键.8、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-
16、2b)2-5,代入求解.【详解】解:a=2b-5,a-2b=-5,a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.9、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12.故答案为:12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题
17、的关键.10、.【分析】首先把式子看成x2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x41(x21)(x21)(x21)(x1)(x1).故答案是:(x21)(x1)(x1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.三、解答题1、【分析】根据提公因式法分解因式求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:(x2y)(2x3y)2(2yx)(5xy)【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、【分析】先提取公因式,再利用完全平方公式即可得解;【详解】解:原式=,=,=;【点睛】本题主要考查了结合提取公因式和完全平方公式法因式分解,准确分析求解是解题的关键.3、(1);(2)【分析】(1)把多项式的每一项分别除以单项式 从而可得答案;(2)先提取公因式 再按照完全平方公式分解因式即可得到答案.【详解】解:(1)原式= (2)原式=【点睛】本题考查的是多项式除以单项式,综合提公因式与公式法分解因式,掌握整式的除法运算,分解因式的方法与步骤是解题的关键.