2022年浙教版初中数学七年级下册第四章因式分解同步练习试卷(浙教版无超纲).docx

上传人:可****阿 文档编号:30736971 上传时间:2022-08-06 格式:DOCX 页数:20 大小:216.46KB
返回 下载 相关 举报
2022年浙教版初中数学七年级下册第四章因式分解同步练习试卷(浙教版无超纲).docx_第1页
第1页 / 共20页
2022年浙教版初中数学七年级下册第四章因式分解同步练习试卷(浙教版无超纲).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年浙教版初中数学七年级下册第四章因式分解同步练习试卷(浙教版无超纲).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解同步练习试卷(浙教版无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解同步练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.2、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.3、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)4、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.5、下列由

2、左边到右边的变形中,属于因式分解的是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)6、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A.若a100,则bc0B.若a100,则bc1C.若bc,则a+bcD.若a100,则abc7、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)8、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.9、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12

3、B.a1,b12C.a1,b12D.a1,b1210、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)211、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.12、若a2-b2=4,a-b=2,则a+b的值为( )A.- B. C.1D.213、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x2414、下列各式由左边到右边的变形,

4、是因式分解的是()A.x2+xy4x(x+y)4B.C.(x+2)(x2)x24D.x22x+1(x1)215、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)二、填空题(10小题,每小题4分,共计40分)1、已知,则_2、已知实数a和b适合a2b2a2b214ab,则ab_3、已知,则_4、多项式各项的公因式是_5、已知ab5,ab2,则a2b+ab2_6、分解因式:_7、将12张长为a,宽为b(ab)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若

5、阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为 _8、多项式x3yxy的公因式是_9、因式分解:_10、若,则多项式的值为_三、解答题(3小题,每小题5分,共计15分)1、因式分解(1) (2)2、因式分解(1)m2n9n;(2)x22x83、下面是小明同学对多项式进行因式分解的过程:解:设,则(第一步)原式(第二步)(第三步)把代入上式,得原式(第四步)我们把这种因式分解的方法称为“换元法”,请据此回答下列问题:(1)该同学因式分解的结果 (填“彻底”或“不彻底”),若不彻底,请你直接写出因式分解的最后结果: ;(2)请你仿照上面的方法,对多项式进行因式分解-参考答案-一

6、、单选题1、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故C符合题意;不能用完全平方公式,故D不符合题意;故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.2、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不

7、符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.3、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:

8、D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.4、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.5、B【分析】根据因式分解的定义逐个判断即可.【详解】解

9、:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分

10、解化简等式,熟练掌握因式分解的方法是解题关键.7、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).8、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分

11、解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).9、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.10、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不

12、是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.11、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项

13、A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.12、D【分析】平方差公式为(a+b)(a-b)=a2-b2可以得到a2-b2=(a+b)(a-b),把已知条件代入可以求得(a+b)的值.【详解】a2- b2=4,a- b=1,由a2-b2=(a+b)(a-b)得到,4=2(a+b),a+b=2,故选:D.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a-b)=a2-b2.13、A【分

14、析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.14、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题

15、意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.15、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的

16、结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.二、填空题1、【分析】先将进行因式分解,然后根据已知条件,即可求解.【详解】解:,.故答案为:.【点睛】本题主要考查了平方差公式的应用,熟练掌握是解题的关键.2、2或2【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.【详解】解:a2b2a2b214ab,a2b22ab1a22abb20,(ab1)2(ab)20,又(ab1)20,(ab)20,ab10,ab0,ab1,ab,a21,a1,ab1或ab1,当

17、ab1时,ab2;当ab1时,ab2,故答案为:2或2.【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.3、3【分析】根据a=2019x+2019,b=2019x+2020,c=2019x+2021,可以得到a-b、a-c、b-c的值,然后将所求式子变形,即可求得所求式子的值.【详解】解:a=2019x+2019,b=2019x+2020,c=2019x+2021,a-b=-1,a-c=-2,b-c=-1,= =3.故答案为:3.【点睛】本题考查了因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.4、4xy【分析】根据公因式的定义,找出系数

18、的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【详解】解:多项式系数的最大公约数是4,相同字母的最低指数次幂是x和y,该多项式的公因式为4xy,故答案为:4xy.【点睛】本题考查多项式的公因式,掌握多项式每项公因式的求法是解题的关键.5、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.6、【分析】根据平方差公式 进行因式分解,即可.【

19、详解】解:,故答案为:【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解.7、4【分析】用a,b分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的,列式计算即可求解.【详解】解:根据题意得:AD=BC=8b+a,AB=CD=2b+a,阴影部分的面积是大长方形面积的,非阴影部分的面积是大长方形面积的,整理得:,即,则小长方形纸片的长a与宽b的比值为4.故答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.8、xy【分析】根据公因式的找法:当各项系

20、数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.【详解】解:多项式x3yxy的公因式是xy.故答案为:xy.【点睛】此题考查了找公因式,关键是掌握找公因式的方法.9、【分析】根据因式分解的定义,观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.10、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+

21、2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.三、解答题1、(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法分解因式,再用平方差公式分解因式.【详解】(1);(2).【点睛】本题考查了十字相乘法和公式法因式分解,掌握因式分解的方法是解题的关键.2、(1)n(m+3)(m-3);(2)(x-4)(x+2)【分析】(1)先提公因式n,再利用平方差公式进行因式分解即可;(2)利用十字相乘法进行因式分解即可.【详解】解:(1)m2n-9n=n(m2-9)=n(m+3)(m-3);(2)x2-2x-8=(x-4)(x+2).【点睛】本题考查提公因式法、公式法、十字相乘法分解因式,掌握平方差公式的结构特征以及十字相乘法适用二次三项式的特点是正确应用的前提.3、(1)不彻底,;(2)【分析】(1)根据因式分解的步骤进行解答即可;(2)设,再根据不同的方法把原式进行分解即可.【详解】解:(1)该同学因式分解的结果不彻底,原式=;(2)设,则=【点睛】本题考查的是因式分解,在解答此类题目时要注意完全平方公式和十字相乘法的应用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁