《中考数学2022年河北石家庄市晋州市中考数学模拟专项测试-B卷(含答案及解析).docx》由会员分享,可在线阅读,更多相关《中考数学2022年河北石家庄市晋州市中考数学模拟专项测试-B卷(含答案及解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北石家庄市晋州市中考数学模拟专项测试 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有三种不同质量的物体“”“”“”,其中,同一种物体的质
2、量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()ABCD2、在下列选项的四个几何体中,与其他类型不同的是( )ABCD3、下列说法正确的是( )A的倒数是B的绝对值是C的相反数是Dx取任意有理数时,都大于04、某农场开挖一条480m的渠道,开工后,每天比原计划多挖20m,结果提前4天完成任务,若设原计划每天挖xm,那么所列方程正确的是( )A= 4B= 20C= 4D= 205、如图,在ABC中,C=20,将ABC绕点A顺时针旋转60得到ADE,AE与BC交于点F,则AFB的度数是()ABCD6、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单
3、价便宜5元,单独买甲种比单独买乙种可多买40个设甲种陀螺单价为x元,根据题意列方程为( )ABCD7、若把分式中的x和y都扩大10倍,那么分式的值( )A扩大10倍B不变C缩小10倍D缩小20倍8、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD9、若分式的值为0,则x的值是()A3或3B3C0D310、如图,反比例函数图象经过矩形边的中点,交边于点,连接、,则的面积是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一元二次方程的根是 2、已知的平方根是,则m=_.3、若直角
4、三角形的两条直角边长分别为cm,cm,则这个直角三角形的斜边长为_cm,面积为_ .4、(1)定义“*”是一种运算符号,规定,则=_(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要_ 元5、根据下列各式的规律,在横线处填空:, -_=_.三、解答题(5小题,每小题10分,共计50分)1、如图是函数的部分图像(1)请补全函数图像;(2)在图中的直角坐标系中直接画出的图像,然后根据图像回答下列问题:当x满足 时,当x满足 时,;当x的取值范围为 时,两个函数中的函数值都随x的增大而增大? 线 封 密 内 号学
5、级年名姓 线 封 密 外 2、一个三位数m,将m的百位数字和十位数字相加,所得数的个位数字放在m之后,得到的四位数称为m的“如虎添翼数”将m的“如虎添翼数”的任意一个数位上的数字去掉后可以得到四个新的三位数,把四个新的三位数的和与3的商记为例如:,297的如虎添翼数n是2971,将2971的任意一个数位上的数字去掉后可以得到四个新的三位数:971、271、291、297,则(1)258的如虎添翼数是_,_(2)证明任意一个十位数字为0的三位数M,它的“如虎添翼数”与M的个位数字之和能被11整除(3)一个三位数(且),它的“如虎添翼数”t能被17整除,求的最大值3、如图,在矩形ABCD中,E是C
6、D边上的一点,M是BC边的中点,动点P从点A出发沿边AB以的速度向终点B运动,过点P作于点H,连接EP设动点P的运动时间是(1)当t为何值时,?(2)设的面积为,写出与之间的函数关系式(3)当EP平分四边形PMEH的面积时,求t的值(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由4、我们知道,有理数包括整数、有限小数和无限循环小数事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?例:将0.7化为分数形式:由于,设x=0.7,即则再由得:,解得,于是得:同理可得:,根据阅读材料回答下列问题
7、:(1)_;(2)昆三中地址为惠通路678号,寓意着三中学子都能被理想学校录取,请将化为分数形式,并写出推导过程(注:)5、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱(1)求小张的“熟客们这两年向小张采购鱼卷的年平均增长率;(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市
8、场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?-参考答案-一、单选题1、A 线 封 密 内 号学级年名姓 线 封 密 外 【详解】【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案【详解】设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意,故选A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系
9、是解题关键2、B【分析】根据立体图形的特点进行判定即可得到答案【详解】解:A、C、D是柱体,B是锥体,所以,四个几何体中,与其他类型不同的是B故选B【点睛】本题主要考查了立体图形的识别,解题的关键在于能够准确找到立体图形的特点3、C【分析】结合有理数的相关概念即可求解【详解】解:A:的倒数是,不符合题意;B:的绝对值是2;不符合题意;C:,5的相反数是,符合题意;D:x取0时,;不符合题意故答案是:C【点睛】本题主要考察有理数的相关概念,即倒数、绝对值及其性质、多重符号化简、相反数等,属于基础的概念理解题,难度不大解题的关键是掌握相关的概念4、C【分析】设原计划每天挖xm,根据结果提前4天完成
10、任务列方程即可【详解】解:设原计划每天挖xm,由题意得= 4故选C【点睛】本题考查了列分式方程解实际问题的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤5、C【分析】先根据旋转的性质得CAE=60,再利用三角形内角和定理计算出AFC=100,然后根据邻补角的定义易得AFB=80【详解】ABC绕点A顺时针旋转60得ADE, CAE=60, 线 封 密 内 号学级年名姓 线 封 密 外 C=20, AFC=100, AFB=80 故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等6、
11、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据题意可得:,故选:C【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程7、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案【详解】解:分式中的x和y都扩大10倍可得:,分式的值不变,故选B【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变8、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得
12、答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度9、A【分析】根据分式的值为零的条件可以求出x的值【详解】依题意得:x290且x0,解得x3故选A【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了分式的值等于0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可10、B【分析】连接OB首先根据反比例函数的比例系数k的几何意义,得出SAOE=SCOF=1.5,然后由三角形任意一边的中线将三角形的面积二
13、等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则SBEF=SOCF=0.75,最后由SOEF=S矩形AOCBSAOESCOFSBEF,得出结果【详解】连接OBE、F是反比例函数y=(x0)图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1.5矩形OABC边AB的中点是E,SBOE=SAOE=1.5,SBOC=SAOB=3,SBOF=SBOCSCOF=31.5=1.5,F是BC的中点,SOEF=S矩形AOCBSAOESCOFSBEF=61.51.50.51.5=故选B【点睛】本题主要考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的
14、直角三角形面积S的关系,即S=|k|得出点F为BC的中点是解决本题的关键二、填空题1、【详解】解:用因式分解法解此方程,即.故答案为:.【点睛】本题考查解一元二次方程.掌握解一元二次方程的方法,选择适合的方法可以简便运算2、7【分析】分析题意,此题运用平方根的概念即可求解.【详解】因为2m+2的平方根是4,所以2m+2=16,解得:m=7.故答案为:7.【点睛】本题考查平方根.3、 线 封 密 内 号学级年名姓 线 封 密 外 【详解】试题解析:由勾股定理得,直角三角形的斜边长=cm;直角三角形的面积=cm2故答案为4、2019; 800 【分析】(1)利用已知的新定义计算即可得到结果;(2)
15、根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求【详解】解:(1) =2-(-2)+2015=2019;(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,地毯的长度为6+4=10米,地毯的面积为102=20平方米,买地毯至少需要2040=800元故答案为:(1)2019;(2)800【点睛】(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键(2)本题考查平移的性质,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算5、 【分析】观察不难发现,两个连续自然数的倒数的和减去后一个自
16、然数的一半的倒数,等于这两个自然数的乘积的倒数.【详解】解:故答案为:;【点睛】本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.三、解答题1、 线 封 密 内 号学级年名姓 线 封 密 外 (1)见解析(2)或;【分析】(1)求出抛物线的顶点坐标,根据对称性作出函数的图象即可;(2)现出直线y=2x+1的图象,找出两函数图象的交点坐标,结合图象可回答问题(1)由知,函数图象的顶点坐标为(0,4)又抛物线具有对称性,所以,补全函数图像如下:(2)如图,从作图可得出,直线y=2x+1与的交点坐标为(-3,-5)和(1,3)所以,当或时,当时,故答案为:或;当时,两
17、个函数中的函数值都随x的增大而增大,故答案为:【点睛】本题考查函数图象,描点法画函数图象,解题的关键是学会利用数形结合的思想解决问题2、(1),(2)见解析(3)1002【分析】(1)根据定义分析即可求解; 线 封 密 内 号学级年名姓 线 封 密 外 (2)根据定义写出,进而写出它的“如虎添翼数”与M的各位数字之和,根据整式的加减运算得出,即可得证;(3)根据定义写出,根据确定的值,进而求解(1)解:当,的如虎添翼数n是,将的任意一个数位上的数字去掉后可以得到四个新的三位数:则(2)设,则,的如虎添翼数n是,其中,则,M的个位数字为任意一个十位数字为0的三位数M,它的“如虎添翼数”与M的个位
18、数字之和能被11整除(3)百位数字和十位数字和为:能被17整除是千位,则是三位数,取最大时,取最大,即能被17整除符合的最大值为【点睛】本题考查了列代数式,整除,整式的加减,一元一次方程的应用,理解题意是解题的关键3、(1)t;(2)yt26t(0t14);(3)t;(4)【分析】(1)通过证明CEMBMP,可得,即可求解;(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;(3)由SEHPSEMP,列出等式可求解;(4)由对称性可得AEPBEP,由角平分线的性质可得PFPH,由面积关系可求解 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:(1)四边形ABCD是矩形A
19、B=CD,BC=ADM是BC边的中点,CMBM6cm,DE=9cm,EC5cm,PMEM,PMBCME90,又BMPBPM90,BPMEMC,又BC90,CEMBMP,t;(2)四边形ABCD是矩形,D90,AE2AD2DE2,AD=12cm,DE=9cm,AEcm,ABCD,DEAEAB,sinDEAsinEAB,HPt,AHt,HE15t,SEHPEHHP,y(15t)tt26t(0t14);(3)EP平分四边形PMEH的面积,SEHPSEMP,(15t)t12(514t)6(14t)65,解得:t1=,t2=0t14,t;(4)如图2,连接BE,过点P作PFBE于F, 线 封 密 内 号
20、学级年名姓 线 封 密 外 点B关于PE的对称点,落在线段AE上,AEPBEP,又PHAE,PFBE,PFPHt,EC5cm,BC12cm,BEcm,SABESAEPSBEP,1412(1513)t,t【点睛】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键4、(1)(2),过程见解析【分析】(1)设,即,则,再把两个方程相减即可得到答案;(2)设,即,则,再把两个方程相减即可得到答案.(1)解:由于,设,即则再由得:,解得,于是得:(2)解:由于,设,即则再由得:,解得,于是得:.【点睛】本题考查的是把
21、循环小数化为分数,一元一次方程的应用,理解题意,构建一元一次方程,掌握方程的特殊解法是解本题的关键.5、(1)(2)小张在今年年底能获得的最大利润是元.【分析】(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为则可得方程再解方程即可得到答案;(2)先求解今年的总的销量为箱,设今年总利润为元,价格下调元,则可建立二次函数为 线 封 密 内 号学级年名姓 线 封 密 外 ,再利用二次函数的性质求解最大值即可.(1)解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为 则 整理得: 解得:(负根不合题意舍去)答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为(2)解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的, 2020年小张年总销量为:(箱),设今年总利润为元,价格下调元,则 令 则 所以抛物线的对称轴为: 所以函数有最大值, 当时,(元),所以小张在今年年底能获得的最大利润是元.【点睛】本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键.