《模拟真题:2022年北京市石景山区中考数学备考真题模拟测评-卷(Ⅰ)(精选).docx》由会员分享,可在线阅读,更多相关《模拟真题:2022年北京市石景山区中考数学备考真题模拟测评-卷(Ⅰ)(精选).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市石景山区中考数学备考真题模拟测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运动中,属于旋转运动的是( )A小明向北走了 4
2、 米B一物体从高空坠下C电梯从 1 楼到 12 楼D小明在荡秋千2、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:火车的速度为30米/秒;火车的长度为120米;火车整体都在隧道内的时间为35秒;隧道长度为1200米其中正确的结论是( )ABCD3、若关于x的不等式组无解,则m的取值范围是( )ABCD4、对于二次函数yx22x3,下列说法不正确的是( )A开口向下B当x1时,y随x的增大而减小C当x1时,y有最大值3D函数图象与x轴交于点(1,0)和(3,0)5、若菱形的周长为8,高为2,则菱形的面积为( )A2B4C8D166、
3、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A200(1 + a)2 = 148B200(1 - a)2 = 148C200(1 - 2a)2 = 148D200(1 - a 2)= 1487、在实数范围内分解因式2x28x+5正确的是()A(x)(x)B2(x)(x)C(2x)(2x)D(2x4)(2x4+)8、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A1个B2个C3个D4个9、下列命题正确的是A零的倒数是零B乘积是1的两数互为倒数C如果一个数是,那么它的
4、倒数是D任何不等于0的数的倒数都大于零 线 封 密 内 号学级年名姓 线 封 密 外 10、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为()A10米B12米C15米D20米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个则该纸箱中红
5、球的数量约有 _个2、方程(2x1)225的解是 _;3、如图,在中,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发_s后,甲乙第一次相距2cm4、如图,在中,以为直角边作等腰直角,再以为直角边作等腰直角,按照此规律作图,则的长度为_,的长度为_5、将一张长方形的纸按照如图所示折叠后,点C、D两点分别落在点、处,若EA平分,则_三、解答题(5小题,每小题10分,共计50分)1、某市为了解七年级数学教育教学情况,对全市七年级学生进行数学综合素质测评,我校也随机抽取了部分学生的测试成绩作为样
6、本进行分析,请根据图中所给出的信息,解答下列问题: 线 封 密 内 号学级年名姓 线 封 密 外 (1)在这次调查中被抽取学生的总人数为 人;将表示成绩类别为“中”的条形统计图补充完整(2)成绩类别为“优”的圆心角的度数为 (3)某校七年级共有750人参加了这次数学考试,估计本校七年级共有多少名学生的数学成绩可达到良或良以上等级?2、如图,数轴上A、B、C三点所对应的数分别是a、b、c且a、b、c满足|a24|(b10)2(c10)20(1)则a_,b_,c_(2)有一动点P从点A出发,以每秒4个单位的速度向右运动经过t秒后,点P到点A、B、C的距离和是多少(用含t的代数式表示)?(3)在(2
7、)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P,Q,T所对应的数分别是xP,xQ,xT,点Q出发的时间为t,当t时,求的值3、关于 x 的方程 x22(k1)x+k20 有两个实数根 x1,x2(1)求 k 的取值范围;(2)请问是否存在实数 k,使得 x1+x21x1x2 成立?若存在,求出 k 的值;若不存在, 说明理由4、如图,一次函数与反比例函数(k0)交于点A、B两点,且点A的坐标为(1,3),一次函数与轴交于点C,连接OA、OB(1)求一次函数和反比例函数的表达式;(2)求点B的
8、坐标及的面积;(3)过点A作轴的垂线,垂足为点D点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM当与RtCNM相似时求M点的坐标5、如图,射线、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合(1)图中与互余的角是_;(2)用直尺和圆规作的平分线;(不写作法,保留作图痕迹)在所做的图形中,如果,那么点在点的_方向 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【分析】旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可【详解】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,
9、故选项A不合题意; B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B不合题意; C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C不合题意; D. 小明在荡秋千,是旋转运动,故选项D符合题意故选D【点睛】本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键2、D【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒故正确;火车的长度是150米,故错误;整个火车都在隧道内的时间是:45-5-5=35秒,故正确;隧
10、道长是:4530-150=1200(米),故正确故选:D【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决3、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围【详解】解:解不等式得:,解不等式得:,不等式组无解,解得:,故选:D【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键4、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】解:y=-x2+2x+3=-(x-1)2+4,a=-10,该函数的图
11、象开口向下, 线 封 密 内 号学级年名姓 线 封 密 外 故选项A正确;对称轴是直线x=1,当x1时,y随x的增大而减小,故选项B正确;顶点坐标为(1,4),当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,函数图象与x轴的交点为(-1,0)和(3,0),故D正确故选:C【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答5、B【分析】根据周长求出边长,利用菱形的面积公式即可求解【详解】菱形的周长为8,边长=2,菱形的面积=22=4,故选:B【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底
12、高是解题的关键6、B【分析】第一次降价后价格为,第二次降价后价格为整理即可【详解】解:第一次降价后价格为第二次降价后价格为故选B【点睛】本题考查了一元二次方程的应用解题的关键在于明确每次降价前的价格7、B【分析】解出方程2x2-8x+5=0的根,从而可以得到答案【详解】解:方程2x2-8x+5=0中,a=2,b=-8,c=5,=(-8)2-425=64-40=240,x=,2x2-8x+5=2(x)(x),故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键8、C【分析】解不等式组得到,利用不等式组有且仅
13、有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可【详解】解:解不等式组得:,不等式组有且仅有3个整数解,解得:,解方程得:,方程的解为负整数,a的值为:-13、-11、-9、-7、-5、-3,符合条件的整数a为:-13,-11,-9,共3个,故选C【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解也考查了解一元一次不等式组的整数解9、B【分析】根据倒数的概念、有理数的大小比较法则判断【详解】解:、零没有倒数,本选项说法错误;、乘积是1的两数互为倒数,本选项说法正确;、如果,则没有倒数,本选项说法错误;
14、、的倒数是,则任何不等于0的数的倒数都大于零说法错误;故选:【点睛】本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键10、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15, 线 封 密 内 号学级年名姓 线 封 密 外 则蚂蚁爬行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算二、填空题1、3【分析】先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可【详解】解:由题意可得:参与该游戏
15、可免费得到吉祥物的频率为=,设纸箱中红球的数量为x个, 则,解得:x=3,所以估计纸箱中红球的数量约为3个,故答案为:3【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率2、x1=3,x2=-2【分析】通过直接开平方求得2x-1=5,然后通过移项、合并同类项,化未知数系数为1解方程【详解】解:由原方程开平方,得2x-1=5,则x=,解得,x1=3,x2=-2故答案是:x1=3,x2=-2【点睛】本题考查了解一元二次方程-直接开平方法(1)用
16、直接开方法求一元二次方程的解的类型有:x2=a(a0);ax2=b(a,b同号且a0);(x+a)2=b(b0);a(x+b)2=c(a,c同号且a0)法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”(2)运用整体思想,会把被开方数看成整体(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点3、4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案【详解】解:根据题意, 线 封 密 内 号学级年名姓 线 封 密 外 ,周长为:(cm),甲乙第一次相距2cm,则甲乙没有相遇,设甲行走的时间为t,则乙行走的时间为,解得:;甲出发4秒后,甲乙第
17、一次相距2cm故答案为:4【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程4、 【分析】根据等腰直角三角形斜边等于直角边的倍分别求解即可【详解】解:, 同理可得, 故答案为:,【点睛】本题考查了等腰直角三角形的性质,熟记等腰直角三角形斜边等于直角边的倍是解题的关键5、120【分析】由折叠的性质,则,由角平分线的定义,得到,然后由邻补角的定义,即可求出答案【详解】解:根据题意,由折叠的性质,则,EA平分,;故答案为:120【点睛】本题考查了折叠的性质,角平分线的定义,邻补角的定义,解题的关键是掌握所学的知识,正确的求出的度数三、解答题1、 线 封 密 内 号学级年名
18、姓 线 封 密 外 (1),见解析;(2);(3)【分析】(1)根据成绩类别为“良”的人数除以其所占的百分数求解抽取学生总人数,再由总人数乘以成绩类别为“中”所占的比例求解成绩类别为“中”的人数,即可补全条形统计图;(2)求出成绩类别为“优”所占的百分数即可求得其所对应的圆心角;(3)根据家长总人数乘以良或良以上等级所占的百分数即可求解(1)解:2244%=50(人),5020%=10(人),答:这次调查中被抽取学生的总人数为50人,补全条形统计图如图所示: 故答案为:50;(2)解:360=72,答:成绩类别为“优”的圆心角的度数为72,故答案为:72;(3)解:750=480(名),答:估
19、计本校七年级共有480名学生的数学成绩可达到良或良以上等级【点睛】本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、能从条形统计图和扇形统计图中获取有效信息是解答的关键2、(1);(2)设经过t秒后,点P到点A、B、C的距离和为,则;(3)0【分析】(1)利用绝对值的非负性及完全平方的非负性求解;(2)需要进行分类讨论,分别为当点在线段上时,当点在线段上时,当点在线段的延长线上时,进行分类讨论;(3)先分别求出当点追上的时间,当点追上的时间,当点追上的时间,根据当时,得出三点表示的数的大小关系,即可化简求值【详解】解(1),故答案是:;(2)设经过t秒后,点P到点A、B、C的距离和为,
20、 线 封 密 内 号学级年名姓 线 封 密 外 当点在线段上时,则,点P到点A、B、C的距离和是:;当点在线段上时,则,点P到点A、B、C的距离和是:;当点在线段的延长线上时,则点P到点A、B、C的距离和是:;(3)当点追上的时间,当点追上的时间,当点追上的时间,当时,位置如图:,【点睛】本题考查了绝对值、数轴上的动点问题、列代数式,解题的关键是利用数形结合思想及分论讨论思想求解3、(1)(2)存在,【分析】(1)根据关于 x 的方程 x22(k1)x+k20 有两个实数根,D0,代入计算求出k的取值范围(2)根据根与系数的关系,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断
21、(1)解:关于 x 的方程 x22(k1)x+k20 有两个实数根根据题意得,解得(2)解:存在 线 封 密 内 号学级年名姓 线 封 密 外 根据根与系数关系,x1+x21x1x2,解得,存在实数k=-3,使得x1+x21x1x2【点睛】本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k的取值范围来进取舍4、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或【分析】(1)把分别代入一次函数与反比例函数,解出,即可得出答案;(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入一次函数解出点C坐标,由即可;(3)根据相似三角形的判定:两边成比例且夹角
22、相等的两个三角形相似,找出对应边成比例求解即可【详解】(1)把代入一次函数得:,解得:,一次函数表达式为,把代入反比例函数得:,即,反比例函数表达式为;(2),解得:或,令代入得:,;(3)当时, 线 封 密 内 号学级年名姓 线 封 密 外 ,即,解得:,M在第一象限,当时,即,解得:,M在第一象限,综上,当与相似时,M点的坐标为或【点睛】本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键5、(1)、(2)作图见解析;北偏东或东偏北【分析】(1)由题可知,故可知与互余的角;(2)如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;,进而得出P与O有关的位置(1)解:图中与互余的角是和;故答案为:、(2)如图,为所作; 线 封 密 内 号学级年名姓 线 封 密 外 ,平分,即点在点的北偏东方向或东偏北故答案为:北偏东或东偏北【点睛】本题考查了余角,角平分线以及坐标系中的位置解题的关键在于正确的求解角度