《模拟真题:2022年北京市石景山区中考数学历年真题汇总-(A)卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《模拟真题:2022年北京市石景山区中考数学历年真题汇总-(A)卷(含答案详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市石景山区中考数学历年真题汇总 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列一元二次方程有两个相等的实数根的是( )AB C
2、D 2、抛物线的顶点坐标是( )ABCD3、若关于x的不等式组无解,则m的取值范围是( )ABCD4、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )AB133C200D4005、下列关于x的方程中,一定是一元二次方程的是()Aax2bx+c0B2ax(x1)2ax2+x5C(a2+1)x2x+60D(a+1)x2x+a06、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:视力4.34.44.54.64.74.84.95.0人数2369121053则视力的众数是
3、( )A4.5B4.6C4.7D4.87、下列方程组中,二元一次方程组有( );A4个B3个C2个D1个8、已知关于x的不等式组的解集是3x4,则a+b的值为()A5B8C11D99、已知,且,则的值为( )A1或3B1或3C1或3D1或310、如图,DE是的中位线,若,则BC的长为() 线 封 密 内 号学级年名姓 线 封 密 外 A8B7C6D7.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用13米长的篱笆围成一个面积为20平方米的长方形场地,其中一边靠墙,若设垂直于墙的一边为x,则可列出的方程是 _;2、_度,_3、如图,已知,那么_(用度、分、秒表示的大小
4、)4、如图,四边形中,在、上分别找一点M、N,当周长最小时,的度数是_5、如图,已知ABC与ADE均是等腰直角三角形,BACADE90,ABAC1,ADDE,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2)2、已知:如图,E,F是线段BC上两点,ABCD,BECF,AD求证:AFDE 3、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?(2)已知甲的速度为,若乙出发半小时后还未追上甲,
5、此时甲、乙两人的距离不到,判断乙能否在途中超过甲,请说明理由 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,数轴上A、B、C三点所对应的数分别是a、b、c且a、b、c满足|a24|(b10)2(c10)20(1)则a_,b_,c_(2)有一动点P从点A出发,以每秒4个单位的速度向右运动经过t秒后,点P到点A、B、C的距离和是多少(用含t的代数式表示)?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P,Q,T所对应的数分别是xP,xQ,xT,点Q出发的时间为t,当t时,求的
6、值5、计算:(1)144(3)2 (2)( )(-24)-参考答案-一、单选题1、B【分析】根据一元二次方程根的判别式判断即可【详解】解:、,方程有两个不等实数根,不符合题意;、,方程有两个相等实数根,符合题意;、,方程有两个不相等实数根,不符合题意;、,方程没有实数根,不符合题意;故选:B【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根2、A【分析】根据二次函数y=a(x-h)2+k的性质解答即可【详解】解:抛物线的顶点坐标是,故选A【点睛】本题考查了二次函数y=a
7、(x-h)2+k(a,h,k为常数,a0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键 y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h3、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:解不等式得:,解不等式得:,不等式组无解,解得:,故选:D【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键4、C【分析】设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一
8、盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可【详解】解:设火车的长度是x米,根据题意得出:=,解得:x=200,答:火车的长为200米;故选择C【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解5、C【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可【详解】解:A当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;B2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不
9、符合题意;C(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;D当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意故选:C【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:是整式方程,只含有一个未知数,所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a0)6、C【分析】出现次数最多的数据是样本的众数,根据定义解答【详解】解:4.7出现的次数最多,视力的众数是4.7,故选:C【点睛】此题考查了众数的定义,熟记定义是解题的关键7、C【分析】组成二元一次方程组的两个方程应共含有两个相同
10、的未知数,且未知数的项最高次数都应是一次的整式方程 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:、符合二元一次方程组的定义,故符合题意;、第一个方程与第二个方程所含未知数共有3个,故不符合题意;、符合二元一次方程组的定义,故符合题意;、该方程组中第一个方程是二次方程,故不符合题意故选:【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:方程组中的两个方程都是整式方程方程组中共含有两个未知数每个方程都是一次方程8、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可【详解】解:解不等式x-a1,得:xa+1,解不等式x+
11、5b,得:xb-5,不等式组的解集为3x4,a+1=3,b-5=4,a=2,b=9,则a+b=2+9=11,故选:C【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值【详解】解:, ,x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1故选:A【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键10、A【分析】已知DE是的中位线,根据中位线定理即可求得BC的长【详解】是的中
12、位线,故选:A【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 二、填空题1、x(13-2x)=20【分析】若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,根据长方形场地的面积为20平方米,即可得出关于x的一元二次方程,此题得解【详解】解:若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,依题意得:x(13-2x)=20故答案为:x(13-2x)=20【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键2、9
13、8.505; 54; 33 【分析】根据度数的单位换算方法及度数的计算法则解答【详解】解:98.505,故答案为:98.505,54,33【点睛】此题考查了角度的计算,正确掌握角度的进率计算是解题的关键3、【分析】根据计算即可【详解】解:,故答案为:【点睛】本题考查了角的和差,以及度分秒的换算,正确掌握1=,是解答本题的关键4、128【分析】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果【详解】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图由对称的性质
14、得:AN=FN,AM=EMF=NAD,E=MABAM+AN+MN=EM+FN+MNEF当M、N在线段EF上时,AMN的周长最小AMN+ANM=E+MAB+F+NAD=2E+2F=2(E+F)=2(180BAD)=2(180116)=128 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:128【点睛】本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键5、【分析】过点A作AHBC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明ABFDCA,进而对应边成比例即可求出FB的长【详解】解:如图,过点A作AHBC于点
15、H,BAC=90,AB=AC=1,BC=,AHBC,BH=CH=,AH=,AD=DE=,DH=,CD=DH-CH=,ABC=ACB=45,ABF=ACD=135,DAE=45,DAF=135,BAC=90,BAF+DAC=45,BAF+F=45,F=DAC,ABFDCA,BF=,故答案为:【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到ABFDAC三、解答题1、(1)(2)【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)先计算单项式乘单项式,积的乘方,再合并同类项即可;(2)利用平方差公式与完全平方公式计算,在合并同类项即可(1)解:,;(2)解:,
16、【点睛】本题考查单项式乘单项式,积的乘方混合运算,乘法公式的混合计算,掌握单项式乘单项式,积的乘方混合运算,熟记乘法公式是解题关键2、见解析【分析】欲证明AFDE,只要证明ABFDCE即可;【详解】证明:BECF,BFCE,ABCD,BC,在ABF和DCE,ABFDCE,AFDE【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型3、(1)甲的速度是12.5千米/时,乙的速度是50千米/时;(2)乙能在途中超过甲理由见解析【分析】(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出
17、发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,列不等式组求得乙的速度范围,进步计算即可判断(1)解:设甲的速度是x千米/时,乙的速度是4x千米/时,由题意,得,解得x=12.5,经检验x=12.5是分式方程的解,12.54=50答:甲的速度是12.5千米/时,乙的速度是50千米/时; 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:乙能在途中超过甲理由如下:设乙的速度是y千米/时,由题意,得,解得:44y48,甲走完全程花时间:小时,则乙的时间为:小时,乙小时走的路程s为:44s4
18、8,即25s28,乙能在途中超过甲【点睛】本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组4、(1);(2)设经过t秒后,点P到点A、B、C的距离和为,则;(3)0【分析】(1)利用绝对值的非负性及完全平方的非负性求解;(2)需要进行分类讨论,分别为当点在线段上时,当点在线段上时,当点在线段的延长线上时,进行分类讨论;(3)先分别求出当点追上的时间,当点追上的时间,当点追上的时间,根据当时,得出三点表示的数的大小关系,即可化简求值【详解】解(1),故答案是:;(2)设经过t秒后,点P到点A、B、C的距离和为,当点在线段
19、上时,则,点P到点A、B、C的距离和是:;当点在线段上时,则,点P到点A、B、C的距离和是:;当点在线段的延长线上时,则点P到点A、B、C的距离和是:; 线 封 密 内 号学级年名姓 线 封 密 外 (3)当点追上的时间,当点追上的时间,当点追上的时间,当时,位置如图:,【点睛】本题考查了绝对值、数轴上的动点问题、列代数式,解题的关键是利用数形结合思想及分论讨论思想求解5、(1)4;(2)-22【分析】(1)先计算乘方,再计算加减法;(2)根据乘法分配律计算【详解】解:(1)144(3)2 =-1-(-5)=4; (2)( )(-24)=(-24)(-24)(-24)=-6+20-36=-22【点睛】此题考查了有理数的计算,正确掌握含乘方的有理数的混合运算法则、乘法分配律法则是解题的关键