《2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程专题训练练习题.docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程专题训练练习题.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2021年9月15日消息,钟南山等团队首次精确描绘德尔塔病毒传播链,该研究揭示了德尔塔变异毒株具有潜伏期短
2、、传播速度快、病毒载量高、核酸转阴时间长、更易发展为危重症等特点德尔塔病毒的直径约为0.00000008m,数字0.00000008用科学记数法表示为( )ABCD2、若关于x的方程有增根,则m的取值是( )A0B2C-2D13、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-74、下列各式中,是分式的是( )ABCD5、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比
3、每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD6、若把分式的x,y同时扩大2倍,则分式的值为()A扩大为原来的2倍B缩小为原来的C不变D缩小为原来的7、下列分式中,是最简分式的是( )ABCD8、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产品所需时间相同,设更新技术前每天生产产品x万件,则可以列方程为()ABCD9、若关于x的方程的解大于0,则a的取值范围是( )ABCD10、如果分式的值等于0,那么x的值是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20
4、分)1、已知:公式其中,均不为零则_(用含有,的式子表示)2、计算:()3_;(9x2y6xy2+3xy)3xy_3、新型冠状病毒的直径约为,数0.0000001用科学记数法表示为_4、分式方程的解是 _5、从3,1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程1有整数解,那么这5个数中所有满足条件的a的值之和是_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中2、解方程: 3、计算:4、(1)解方程:(2)先化简,再求值:的值,其中5、设M(1)化简代数式M;(2)请在以下四个数中:2,2,3,3,选择一个合适的数代入,
5、求M的值-参考答案-一、单选题1、A【分析】根据用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,求解即可得出答案【详解】解:0.00000008=810-8故选:A【点睛】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键2、A【分析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值【详解】方程两边都乘以(x-2)得:-2+x+m=2(x-2),分式方程有增根,x-2=0,解得x=2,-
6、2+2+m=2(2-2),解得m=0故答案为:A【点睛】此题考查分式方程的增根,掌握运算法则是解题关键3、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、B【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式【详解】解:A是整式,不符合题意;B是分式,符合题意;
7、C是整式,不符合题意;D是整式,不符合题意;故选:B【点睛】本题主要考查的是分式的定义,掌握分式的定义是解题关键5、C【分析】设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,得:,故选:C【点睛】本题考查了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系6、D【分析】分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可【详解】解:根据题意得:,即把分式的x,y同时扩大2倍,则分式的值缩小为原来的,故选:D
8、【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论7、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可【详解】解:A、的分子与分母含公因式(x+1),不属于最简分式,不符合题意; B、的分子与分母不含公因式,属于最简分式,符合题意;C、的分子与分母含公因式a,不属于最简分式,不符合题意;D、的分子与分母含公因式(ab),不属于最简分式,不符合题意;故选:B【点睛】此题主要考查了最
9、简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键8、A【分析】更新技术前每天生产产品x万件,可得更新技术后每天生产产品(x+3)万件根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程即可【详解】解:更新技术前每天生产产品x万件,更新技术后每天生产产品(x+3)万件依题意得故选:A【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列出方程是解题关键9、A【分析】先去分母,求出分式方程的解,进而得到关于a的不等式组,即可求解【详解】解:由,解得:,且a-10,故选A【点睛】本题主要考查解分式方程以及不等式,掌
10、握去分母,把分式方程化为整式方程,是解题的关键10、B【分析】根据分式的值为0的条件可得,即可求得答案【详解】解:分式的值等于0,故选B【点睛】本题考查了分式的值为0的条件,解题的关键是理解分式的值为0的条件是分子为0,分母不为0二、填空题1、【分析】在公式的两边都乘以即可得到答案.【详解】解: 故答案为:【点睛】本题考查的是公式的变形,利用解分式方程的思想进行变形是解本题的关键.2、-27x38y6 3x2y+1 【分析】根据分式的乘方法则和分式的约分方法计算即可【详解】解:()3;(9x2y6xy2+3xy)3xy=3x2y+1;故答案为:;3x2y+1【点睛】本题考查了分式的乘方和分式的
11、约分,分式的乘方是把分子、分母分别乘方,分式的约分是把分式分子、分母中除1以外的公因式约去3、1107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000011107,故答案是:1107【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、x=-6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:2
12、x=3x+6,解得:x=-6,检验:把x=-6代入得:x(x+2)0,x=-6是分式方程的解故答案为:x=-6【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验5、【分析】不等式组中两不等式整理后,由不等式组无解确定出a的范围,进而舍去a不合题意的值,分式方程去分母转化为整式方程,表示出整数方程的解,由分式方程有整数解,确定出满足题意a的值,求出之和即可【详解】解:解不等式得:,解不等式得:不等式组的解集为,由不等式组无解,得到a1,即a3,1,1,分式方程去分母得:x+a23x,解得:x,由分式方程的解为整数,得到a-3,1,所有满足条件的a的值之和是-3+1=-2,故答案
13、为:-2【点睛】本题主要考查了解一元一次不等式组和解分式方程,解题的关键在于能够熟练掌握相关知识进行求解三、解答题1、,6【分析】先计算括号内的分式加法,再计算分式的除法,然后将代入计算即可得【详解】解:原式,将代入得:原式【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键2、【分析】先去分母把方程化为整式方程,再解整式方程并检验即可.【详解】解:去分母得: 去括号得: 整理得: 解得: 经检验:是原方程的解,所以原方程的解是.【点睛】本题考查的是解分式方程,掌握“解分式方程的步骤”是解本题的关键.3、【分析】先把除化乘,再因式分解同时约分,通分合并化简为最简分式即可【详解】解
14、:,=,=,=,=,=【点睛】本题考查分数加减乘除混合运算,掌握分式混合运算法则是解题关键4、(1)原方程无解;(2),【分析】(1)先去分母,然后再进行求解方程即可;(2)先把分子分母进行因式分解,然后再进行分式的除法运算,最后代值求解即可【详解】解:(1)去分母得:,去括号得:,移项、合并同类项得:,解得:,经检验:使分母为0,分式无意义,原方程无解;(2)=;把代入得:原式=【点睛】本题主要考查分式的化简求值及分式方程的解法,熟练掌握分式的化简求值及分式方程的解法是解题的关键5、(1)a25a+6(2)30【分析】(1)根据分式的除法法则计算即可;(2)根据分式有意义的条件确定a的值,代入计算即可(1)解: M(a3)(a2)a25a+6;(2)解:由题意得,a2,a3,当a3时,M(3)25(3)+630【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则、分式有意义的条件是解题的关键