2022年浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析).docx

上传人:知****量 文档编号:28187268 上传时间:2022-07-26 格式:DOCX 页数:20 大小:323.22KB
返回 下载 相关 举报
2022年浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析).docx_第1页
第1页 / 共20页
2022年浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x32、多项式的因式为( )A.B.C.D.以上都是3、下列等式中,从左到右的变形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4

2、mn)C.x2+2xx(x2)D.x22x+3x(x2)+34、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定5、下列各组式子中,没有公因式的是()A.a2+ab与ab2a2bB.mx+y与x+yC.(a+b)2与abD.5m(xy)与yx6、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b127、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.8、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式

3、分解,是乘法运算D.是乘法运算,是因式分解9、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.10、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y11、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)212、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.713、下列各式从左到右的变形中

4、,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)14、若,则的值为( )A.B.C.D.15、下列式子的变形是因式分解的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、分解因式:3a(xy)2b(yx)_2、若ab=2,a-b=3,则代数式ab2-a2b=_3、将多项式因式分解_4、分解因式:xy3x+y3_5、分解因式:_6、若代数式x2a在有理数范围内可以因式分解,则整数a的值可以为_(写出一个即可)7、由多项式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式

5、子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _8、小明将(2020x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1c2的值是_9、若实数a、b满足:a+b6,ab10,则2a22b2_10、dx42x3+x210x4,则当x22x40时,d_三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)x316x;(2)2x3y+4x2y22xy32、因式分解(1)(2)3、因式分解(1) (

6、2) -参考答案-一、单选题1、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形

7、式,叫因式分解;熟练掌握定义是解题关键.2、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.3、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.x2+2xx(x2),把一个多项式化为几个整式的积的形式,原变形是因式分解

8、,故此选项符合题意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.4、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac

9、)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N|-1(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.5、B【分析】公因式的定义:多项式中,各项都含有一个公共的因式,因式叫做这个多项式各项的公因式.【详解】解:、因为,所以与是公因式是,故本选项不符合题意;、与没有公因式.故本选项符合题意;、因为,所以与的公因式是,故本选项不符合题意;、因为,所以与的公因式是,故本选项不符合题意;故选:B.【点睛】本题主要考查公因式的确

10、定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.6、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.7、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因

11、式分解,解题的关键是熟知乘方公式的特点.8、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符

12、合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.10、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合

13、题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.13、D【分

14、析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此选项不符合题意;B、x21+y2(x1)(x+1)+y2,不是因式分解,故此选项不符合题意;C、ax+bx+cx(a+b)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.14、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.

15、15、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.二、填空题1、【分析】根据提公因式法因式分解即可.【详解】3a(xy)2b(yx)=故答案为:【点睛】本题考查了提公因式法因

16、式分解,正确的计算是解题的关键.2、6【分析】用提公因式法将ab2-a2b分解为含有ab,a-b的形式,代入即可.【详解】解:ab=2,a-b=3,ab2-a2b=-ab(a-b)=23=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab2-a2b分解为含有ab,a-b的形式,用整体代入即可.3、【分析】先提取公因式 再利用平方差公式分解因式即可得到答案.【详解】解:故答案为:【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.4、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.

17、【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.5、【分析】先提出公因式 ,再利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.6、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a1时,x2ax21(x+1)(x1),故a的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛

18、】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.7、【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】故答案为:.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.8、4041【分析】根据(2020x+2021)2=(2020x)2+220212020x+20212得到c120212,同理可得 c220202,所以c1-c2=20212-20202,进而得出结论.【详解】解:(2020x+2021)2=(2020x)2+220212020x+20212, c1=20212, (2021x-2020)2=(2021x)2-220202021x+20202,

19、 c2=20202, c1-c2=20212-20202=(2021+2020)(2021-2020)=4041, 故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.9、120【分析】将所求式子变形,然后根据a+b6,ab10,即可求出所求式子的值.【详解】解:2a22b22(a2b2)2(a+b)(ab),a+b6,ab10,原式2610120,故答案为:120.【点睛】本题考查因式分解的应用、平方差公式,解答本题的关键是明确题意,求出所求式子的值.10、16【分析】先将x22x4=0化为x22x=4,再将d化为x2(x22x)+x22

20、x8x4后整体代入计算可求解.【详解】解:x22x40,x22x4,dx42x3+x210x4x2(x22x)+x22x8x44x2+48x44(x22x)16.故答案为:16.【点睛】本题主要考查因式分解的应用,将d化x2(x22x)+x22x8x4是解题的关键.三、解答题1、(1)x(x+4)(x4);(2)2xy(xy)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式x(x216)x(x+4)(x4);(2)原式2xy(x22xy+y2)2xy(xy)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.2、(1)(3y+2x)(3y-2x);(2)(x+3)2【分析】(1)使用平方差公式进式分解即可;(2)使用完全平方公式分解因式即可.【详解】解:(1)原式=(3y)2-(2x)2=(3y+2x)(3y-2x);(2)原式=x2+2x3+32=(x+3)2.【点睛】本题考查了公式法分解因式,熟记a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是解题的关键.3、(1);(2)【分析】(1)提取公因式即可得到答案;(2)先提取公因式,然后利用完全平方公式求解即可.【详解】解:(1)原式 ; (2)原式.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁