《2022年浙教版初中数学七年级下册第四章因式分解定向测试试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解定向测试试题(精选).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解定向测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab2、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解3、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个4、把代数
2、式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)5、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.6、下列各式从左到右的变形,属于因式分解的是( )A.B.C.D.7、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.8、下列各式从左到右的变形是因式分解为( )A.B.C.D.9、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定10、下列因式分解正确的是( )A.B.C.D.11、下列从左边到右边的变形,
3、属于因式分解的是( )A.B.C.D.12、下列各式中,因式分解正确的是( )A.B.C.D.13、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.514、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a15、已知的值为5,那么代数式的值是( )A.2030B.2020C.2010D.2000二、填空题(10小题,每小题4分,共计40分)1、多项式x3yxy的公因式是_2、分解因式:3mn212m2n_3、因式分解:x3y2x_4、由多项
4、式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _5、6x3y23x2y3分解因式时,应提取的公因式是_6、分解因式:9a2+b2_7、若代数式x2a在有理数范围内可以因式分解,则整数a的值可以为_(写出一个即可)8、因式分解:_9、分解因式:x41_10、分解因式:_;_三、解答题(3小题,每小题5分,共计15分)1、分解因式:(1)16x28xy+y2;(2)a2(xy)+b2(yx)2、现用“”定义新运算:xyx3xy(1)
5、计算x(x21);(2)将x16的结果因式解3、把因式分解-参考答案-一、单选题1、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.2、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变
6、形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.3、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,不符合题意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.4、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x
7、28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.5、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.6、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式
8、乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.7、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解
9、的定义的内容是解此题的关键 .8、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求
10、解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,a=-2,b=-1,M|-2(-2+3)|=2,N|-1(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.10、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,
11、故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.11、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.12、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【
12、详解】解:.,故此选项不合题意;.,无法分解因式,故此选项不合题意;,故此选项符合题意;.,故此选项不合题意;故选:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.13、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.14、B【分析】根据
13、因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.15、B【分析】将化简为,再将代入即可得.【详解】解:,把代入,原式=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.二、填空题1、xy【分析】根据公因式的找法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.【详解】解:多项式x3yxy的公因式是
14、xy.故答案为:xy.【点睛】此题考查了找公因式,关键是掌握找公因式的方法.2、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(n4m).故答案为:3mn(n4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.3、x(xy1)(xy1)【分析】先提公因式x,再根据平方差公式进行分解,即可得出答案.【详解】解: x3y2xx(x2y21)x(xy1)(xy1)故答案为x(xy1)(xy1).【点睛】此题考查了因式分解的方法,涉及了平方差公式,熟练掌握因式分解的方法是解题的关键.4、【分析】根据“十字相乘法”的方法进行因式分解即可.【详解
15、】故答案为:.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.5、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故答案为:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.6、 (b+3a)(b-3a)【分析】原式利用平方差公式分解即可.【详解】解:-9a2+b2= b2-9a2=(b+3a)(b-3a
16、).故答案为:(b+3a)(b-3a)【点睛】本题考查了运用平方差公式分解因式,熟练掌握平方差公式的结构特征是解本题的关键.7、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a1时,x2ax21(x+1)(x1),故a的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.8、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.9、.【分析】首先把式子看成
17、x2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x41(x21)(x21)(x21)(x1)(x1).故答案是:(x21)(x1)(x1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.10、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题1、(1)(4xy)2;(2)(a+b)(ab)(xy).【分析】(1)运用完全
18、平方公式分解即可;(2)先提取公因式(xy),再用平方差公式分解即可.【详解】解:(1)原式(4xy)2;(2)原式a2(xy)b2(xy),(xy)(a2b2),(a+b)(ab)(xy).【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:因式分解要彻底.2、(1)x;(2)x(x4)(x4)【分析】(1)原式利用题中的新定义化简,计算即可得到结果;(2)原式利用题中的新定义化简,分解即可.【详解】解:(1)根据题中的新定义得:原式x3x(x21)x3x3xx;(2)根据题中的新定义得:原式x316xx(x216)x(x4)(x4).【点睛】此题考查了整式的混合运算及提公因式和公式法分解因式,熟练掌握运算法则是解本题的关键.3、【分析】直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.